摘要:表皮生长因子受体(EGFR)是一类受体酪氨酸激酶,也称为ERBB1和HER1。EGFR酪氨酸激酶活性抑制作用被认为是癌症治疗的有前途的治疗策略。从药品特权分子到商业药物的EGFR酪氨酸Ki-Nase(EGFR-TK)的许多小分子抑制剂已被概述。对分子的结构及其作用机理的特定关注。随后进行了讨论的分子的分类。natu-ral和合成,可逆的和不可逆的EGFR-酪氨酸激酶抑制剂。由EGFR基因过度表达,其可能的分子起源以及其本性引起的各种类型的癌症也被计数。因为EGFR信号传导途径控制细胞的增殖,生长,存活和分化,而突变的EGFR基因过度产生了EGFR蛋白,EGFR蛋白最终导致几种类型的癌症,适当地理解蛋白质结构之间的分子动态,其抑制剂及其抑制作用将导致更有效的EGFR-TKIS,从而可以节省更多的癌症,从而可以节省更多的生命。
抗癌剂“TASFYGO®片35mg”(tasurgratinib琥珀酸酯)在日本批准在带有FGFR2基因融合或重新安排Eisai Co.,Ltd.有限公司(总部:Tokyo:Tokyo,CEO:Haruo Naito and Isalrory for Advorruation and eisai and over for for for Figran)的胆道癌或重新排列的胆道癌。日本的受体(FGFR)选择性酪氨酸激酶抑制剂“TASFYGO®TASFYGO®片剂35mg”(Tasurgratinib琥珀酸酯)(tasurgratinib琥珀酸酯)用于治疗患有FGFR2基因融合或重排的不可切除的胆道癌患者,这些患者在癌症化学治疗后进展。在日本,它已收到卫生,劳动和福利部(MHLW)的孤儿药物,并于2023年12月提交了营销授权申请。此批准基于数据,例如由Eisai在日本和中国进行的多中心,开放标签,单臂临床II期试验(研究201)的结果。研究201招募了63例患有不可切除的晚期或转移性胆管癌患者,该患者具有FGFR2基因融合或以前用基于吉西他滨的组合化疗治疗的重排。这项研究的主要终点是客观响应率(ORR),次要终点包括安全性。1这项研究达到了其主要终点,并超过了具有统计学意义的预先指定的肿瘤反应阈值(15%):用独立成像综述评估,用TasFygo治疗的患者的ORR为30.2%(90%置信区间(CI):20.7-41.0)。治疗 - 急性不良事件(发生率为25%或以上)是高磷酸血症(81.0%),棕榈 - 翼展红细胞炎综合征(44.4%),腹泻(44.4%),腹泻(36.5%)(36.5%),天冬氨酸氨基糖化酶增加(31.7%),Alanity Amin(28.7%)(28.7%)(28.7%)(28.7%)(28.7%)(31.7%)(28.7%) (25.4%)。
蛋白水解靶向嵌合体 (PROTAC) 是一种很有前途的治疗方式,在癌症治疗中引起了广泛关注。利用 PROTAC 技术,我们使用 Cereblon (CRBN) 和 Von Hippel – Lindau (VHL) E3 配体合成了新型结构修饰的基于 paullone 的 PROTAC。与标准阿霉素相比,PROTAC 23a 显著抑制了 MCF-7 乳腺癌细胞 (IC 50 = 0.10 µ M) 和 A549 肺癌细胞 (IC 50 = 0.12 µ M) 的生长。通过 MCF-7 细胞中的免疫印迹试验评估了这些新型 PROTAC 的降解效率。蛋白质印迹结果显示,PROTAC 23a 在浓度范围为 5.5 至 16 µ M 时降解细胞周期蛋白依赖性激酶 1 (CDK1),从而产生抗癌作用。分子对接用于确认活性 PROTAC 23a 对 CDK1 结合位点的亲和力。我们的研究结果表明了基于 paullone 的 PROTAC 作为 CDK1 降解剂的重要性,可能利用其来识别更有效的乳腺癌和肺癌临床治疗候选药物。
使用绿色方法合成的MGO NP的平均大小确定为24 nm。分子对接分析的结果表明,MGO纳米颗粒对极性氨基酸Ser 30,ASP 37和Lys 39的α-葡萄糖苷酶具有强大的亲和力。在100 µg/ml的浓度下观察到生物MGO纳米颗粒的最高水平,并且证明它们是最强大的抑制剂,将酶活性降低了60%。使用各种剂量的MGO纳米颗粒,包括25 µg/ml,50 µg/ml和100 µg/ml,用于抑制癌细胞系的生长。然而,最高的浓度表现出最显着的抑制作用。还评估了MGO NP的功效,以确定视网膜色素上皮细胞系(RPE)确定其对正常细胞的影响。发现MGO NP明确影响目标区域而不会损害健康细胞。
传统药物及其活性成分以及一些天然产物和衍生类似物已被用于治疗多种疾病,包括癌症。在这些化合物中,细胞毒性剂如博来霉素、紫杉醇和长春新碱可阻断癌细胞生长所需的基本途径和基因,这些药物具有多种临床应用。膳食酚类化合物(包括黄酮类化合物和相关化合物)具有多种健康益处,然而,大多数在临床前研究中显示出良好抗癌活性的个体膳食化合物和其他天然产物的临床效果极小,对癌症尤其如此。由于药代动力学考虑和摄取有限(例如姜黄素),许多化合物在临床试验中表现不佳,这些问题是可以解决的。黄酮类化合物和许多其他天然产物衍生的抗癌化合物的临床效果也可以通过更有针对性的方法得到增强。这将包括识别特定癌症中的显著反应/基因或靶点,然后确定最佳化合物。在这篇评论中,我讨论了有限数量的靶标,包括非致癌基因成瘾基因,例如 Sp 转录因子、活性氧 (ROS) 或孤儿核受体 4A (NR4A) 亚家族。因此,对这些反应最有效的化合物只能用于治疗 ROS 诱导或高表达靶标(例如 Sp1 或 NR4A 亚家族成员)的患者。基于机制的精准医疗方法应能提高饮食和相关天然产品作为抗癌剂的临床疗效,并减少某些联合疗法的毒副作用。
恶性实体肿瘤迅速生长,氧气区域低于生理水平的形成。肿瘤缺氧是由于癌细胞中氧气供应与氧气消耗之间的不平衡引起的,例如与肿瘤生长相比,肿瘤脉管系统的形成速率相对较慢[1-4]引起[1-4]。癌细胞位于肿瘤血管远端区域,由于围绕血管的癌细胞的氧气消耗,导致恶性实体瘤的低氧区域,因此无法获得足够的氧气[1-4]。肿瘤脉管系统的曲折和漏水结构也是肿瘤缺氧的原因之一[1-4]。缺氧导致癌症的恶性表型和治疗性。[1 - 4]。已经揭示了细胞对缺氧的反应受某些因素的调节,但是缺氧诱导因子1(HIF-1)诱导与血管生成有关的各种基因的转录,与血管生成,葡萄糖代谢,细胞增殖,生存,入侵和转移相关,被识别为高氧响应的大师调节剂[5-7-7-7-7-7-7-7-7 ressian。HIF-1途径是预防癌症侵略性并提高癌症治疗有效性的有吸引力的目标。HIF-1是一个构成HIF-1α和HIF-1β子单位的异二聚体转录因子(图1)。HIF-1α表达受到细胞周围的氧气水平的影响,并在低氧条件下诱导。相反,构成表达的HIF-1β亚基,也称为芳基羟基受体核转运剂(ARNT)
摘要:尽管顺铂是一种化学治疗剂,但其应用仍受到限制剂量副作用的影响,并且对癌细胞缺乏选择性。研究人员可以利用铂(IV)氧化态的促药性质来克服这些问题,并通过用特定的受体在肿瘤细胞膜中过表达的金属中心的配位球体(例如,碳水化合物)。在本文中,我们报告了基于顺铂支架的四种新型碳水化合物模化的PT(IV)Pro-prougs的合成,以及它们针对骨肉瘤(OS)的生物学活性,骨肉瘤(OS)是一种恶性肿瘤,这是一种恶性肿瘤,在青少年和年轻人中最常见。使用铜催化的叠氮化物 - 烷基环加成(CUAAC)化学,碳水化合物靶向载体和PT支架是连接的,这是轻度和稳健的反应条件的代名词。使用多核1D-2D NMR(1 H,13 C和195 pt),IR,HR-MS,Elem对新型复合物进行表征。分析和简历。讨论了2D和3D的细胞毒性以及OS细胞系以及非癌性人类胎儿成骨细胞(HFOB)的细胞形态研究。
聚合物是各种生物材料,通常应用于抗癌和抗菌剂的组织工程和载体中。有多种化学,生物学,医学和工业应用,用于聚乙烯乙二醇(PEG),一种水溶性聚醚。由PEG组成的聚合药物输送系统由于免疫原性,生物降解性,活性药物靶向和可持续的药物释放特征而具有许多优势。此外,该聚合物已成功地用于为各个身体部位的组织工程制备三维(3D)支架。是增加生物相容性和全身循环时间的关键步骤。此外,刺激性反应性和两亲性药物结合物基于PEG作为自组装的配方,例如胶束增强了细胞内药物的释放。在这篇综述中,我们试图提出并讨论与PEG在抗菌药物携带者和组织工程中的新应用相关的最新进展和挑战。
癌症是全球最可怕的疾病,也是第二大死亡原因。为了设计出有效的分子来应对这一主要死亡原因,人们一直在不断研发。为了降低毒性水平并提高药物对癌症靶标的选择性,杂合分子的开发已成为研究的中心,科学家们正在不懈努力地开发这种与之前的发展无可比拟的杂合分子。杂环部分尿嘧啶及其许多衍生物已被证实是有前途的抗癌剂。此外,尿嘧啶和 5-氟尿嘧啶 (5-FU) 与不同药效团的偶联已被证明是一种极好的抗癌策略。因此,本综述旨在集体介绍所有早期和最近的尿嘧啶和 5-FU 杂合体的发展,据报道这些杂合体具有显著的抗癌特性。我们可以确信,本文可以作为进一步开发尿嘧啶和 5-FU 混合物的基础,并必将激励药物化学家生产出独特的抗癌药物。
结直肠癌 (CRC) 是当今重大的公共卫生问题。化疗药物(包括 5-氟尿嘧啶、卡培他滨、阿霉素和紫杉醇)可有效阻止恶性细胞的发展。然而,这些药物会影响健康细胞并产生许多副作用。本研究采用计算分子对接方法和 ADME-T 分析来研究所选的草药抗癌化合物(苦杏仁苷)对抗结肠癌的作用。使用 Schrödinger Suite 对 CDK-2 蛋白进行分子对接分析。此外,使用 Protox III、pkCSM 和 SwissADME 网络服务器对苦杏仁苷进行 ADME-T 分析,以评估其物理化学、药代动力学和药效学特性。结果表明,苦杏仁苷对靶蛋白 CDK-2 具有最大结合亲和力(-10.92 kcal/mol)。 ADME-T 分析表明苦杏仁苷可能是治疗 CRC 的潜在化疗药物。苦杏仁苷口服时无致癌性和遗传毒性,且急性口服毒性低。这项研究将有助于科学界和社会寻找治疗 CRC 的有效药物。