CRISPR 技术的发展为理解基本生物过程的进化和功能提供了强有力的工具。在这里,我们展示了在雌雄异株苔藓物种 Ceratodon purpureus 中成功的 CRISPR-Cas9 基因组编辑。利用远亲雌雄同体苔藓 Physcomitrium patens 的现有选择系统,我们通过使用 CRISPR 靶向诱变在天然 U6 snRNA 启动子表达下产生 APT 报告基因的敲除。接下来,我们使用天然同源定向修复 (HDR) 途径与 CRISPR-Cas9 相结合,在 C. purpureus 新开发的着陆点的内源性 RPS5A 启动子表达下敲入两个报告基因。我们的结果表明,在 P. patens 中开发的分子工具可以扩展到这个生态重要且发育多变的群体中的其他苔藓。这些发现为精确而有力的实验铺平了道路,旨在确定苔藓植物内部以及苔藓植物与其他陆地植物之间关键功能变异的遗传基础。
图 3. (A) 小鼠 1 海马的细胞类型识别和 tdTomato 报告基因转录水平 (A) 小鼠 1 的带注释的综合 UMAP 投影显示实验和对照条件下存在 12 种不同的细胞类型。簇 0 和簇 12 被识别为阳性对照成纤维细胞刺突。
最近,出现了一种新的蛋白质蛋白质相互作用研究的方法。可以使用田野和同事开发的“两杂交系统”(1,2)来寻找新的相互作用蛋白质,或者验证和表征可能会根据遗传或生物化学数据关联的蛋白质之间的相互作用。两种杂交系统是一种分子遗传方法,它利用酵母转录因子GAL4的结构柔韧性。GAL4蛋白包含两个结构域,即DNA结合域和转录激活剂结构域。这两个结构域不必成为同一蛋白的一部分来完成转录激活(3)。当两个结构域分别融合到两个无关但相互作用的蛋白质时,由于蛋白质 - 蛋白质相互作用,可以实现转录激活。通常,使用两种杂交系统对新的相互作用蛋白进行搜索是通过将含有UASC的集成拷贝的酵母菌菌株共转换。1J-LACZ报告基因和两个质粒(2,4-6)。一个质粒编码GAL4的DNA结合结构域与感兴趣的蛋白质的融合,而另一个质粒(库质粒)编码GAL4转录激活结构域的融合以随机生成的编码区域。因此,DNA结合结构域融合将与报告基因上游的UASGAL元件结合。如果由文库融合质粒编码的蛋白质与感兴趣的蛋白质相互作用,则转录激活结构域成为报告基因上游的共定位,从而导致转录激活。有效使用两个杂交系统需要产生大量的酵母转化体。由于酵母的转化仍然比细菌的效率低四个数量级,因此对于详尽的cDNA文库筛网来说,转化可能是限制步骤。在本文中,我们设计了一种简单的方法,可以消除对转化的需求,并允许用户搜索
InvivoGen 的可定制 PRR 筛选服务使用经过改造的 HEK293、THP-1 或 A549 报告细胞来检测关键免疫通路的激活剂或抑制剂。我们的定制检测采用 SEAP 和/或 Lucia® 荧光素酶报告基因来评估 NF-κB 和 IRF 通路活性,可提供精确的数据,加速先导化合物的发现。
摘要的最新发现表明,翻译伸长率会影响mRNA稳定性。与mRNA衰变和翻译速度之间有关这种联系的因素之一是酵母死盒解旋酶DHH1P。在这里,我们证明了DHH1P的人类直系同源物DDX6触发了人类细胞中未效率低下的mRNA的依赖性衰减。ddx6通过其reca2域中的phe-aspphe(FDF)基序与核糖体相互作用。此外,ddx6需要reca2-介导的相互作用和ATPase活性才能使降低效率低下的mRNA。使用核糖体分析和RNA测序,我们确定了以DDX6依赖性方式调节的两类内源mRNA。确定的靶标在稳态水平上进行翻译调节或调节,并且要么表现出较差的总体翻译或局部降低的核糖体易位速率的特征。将确定的序列延伸到报告基因mRNA中,导致报告基因mRNA的翻译和DDX6依赖性降解。总而言之,这些结果将DDX6识别为mRNA翻译的关键调节剂,并由缓慢的核糖体运动触发,并洞悉DDX6降低了效率低下的mRNA的机制。
微核 (MN) 与先天免疫反应有关。MN 膜的突然破裂会导致 cGAS 积聚,从而可能激活 STING 和下游干扰素反应基因。然而,缺乏将 MN 和 cGAS 激活联系起来的直接证据。我们开发了 FuVis2 报告系统,该系统能够可视化携带单个姊妹染色单体融合的细胞核,从而可视化 MN。使用配备 cGAS 和 STING 报告基因的 FuVis2 报告基因,我们严格评估了 MN 在单个活细胞中激活 cGAS 的效力。我们的研究结果表明,在间期,cGAS 定位到膜破裂的 MN 的情况很少,cGAS 主要在有丝分裂期间捕获 MN 并保持与细胞浆染色质结合。我们发现,有丝分裂期间的 cGAS 积累既不会在随后的间期激活 STING,也不会触发干扰素反应。伽马射线照射可独立于微核形成和 cGAS 定位到微核来激活 STING。这些结果表明,细胞质微核中的 cGAS 积累并不是其激活的有力指标,微核不是 cGAS/STING 通路的主要触发因素。
伊蚊会将包括黄病毒在内的多种病原体传播给人类,导致高发病率和死亡率。由于适应性和气候变化,这些蚊媒预计将在新的地理区域定居,从而使更多的蚊子面临感染风险。因此,控制伊蚊媒介对于防止疾病传播是必要的。最近,遗传学方法在媒介控制方面显示出良好的前景;然而,操纵蚊子基因组的工具和方法相当有限。虽然 CRISPR-Cas9 系统已被用于伊蚊的基因编辑目的,但基于 dCas9 的基因转录控制仍未得到探索。在本研究中,我们报告了 CRISPR 激活系统在伊蚊细胞中的实施。为此,我们设计、构建和测试了一种基于双质粒的策略,该策略允许表达 dCas9-VPR 和靶向向导 RNA 以及报告基因盒。荧光报告基因水平的定量分析显示了强大的过表达,验证了伊蚊细胞中的 CRISPR 激活。该策略和生物学部分将成为基于合成转录因子的伊蚊基因强劲上调的有用资源,以应用合成生物学方法进行媒介控制。
图4:a)MDA-MB-231细胞被绿色 - 肾上腺胶体易感病毒感染,并使用紫霉素选择了稳定的转导细胞。每周一次通过IVIS系统确定生物发光信号的强度六周。b)用红色葡萄糖和GFP标记的双重标记的MDA-MB-231细胞。可以通过两个FACS分析检测GFP报告基因表达。c)使用Nuance多光谱成像系统测量HT1080细胞中的GFP表达。
摘要:人类和其他生物体通过大气、饮用水、食物或直接接触不断接触成千上万种化学物质。这些化学物质中很大一部分浓度很低,即使在未观察到不良影响水平 (NOAEL) 下也可能产生协同作用。复杂的污染物混合物很难通过传统的毒理学方法进行评估。人们越来越关注不同污染物如何通过影响昼夜节律而诱导人体不良的生理功能。然而,从大量化学物质或其复杂混合物中筛选出具有昼夜节律破坏作用的化合物非常困难。我们通过 CRISPR/Cas9 建立了稳定的萤火虫荧光素酶报告基因敲入 U2-OS 细胞系,以筛选昼夜节律破坏污染物。荧光素酶基因插入核心时钟基因 BMAL1 下游并由内源启动子控制。与使用外源启动子的检测系统相比,这些细胞能够检测干扰 BMAL1 基因表达介导的昼夜节律系统的化合物。U2-OS 敲入细胞显示,当用 BMAL1 抑制剂和激活剂处理时,BMAL1 和荧光素酶活性发生了平行变化。此外,荧光素酶报告基因具有高灵敏度,比传统毒理学方法更快、更经济。敲入细胞系可用于高通量、高效筛选破坏昼夜节律的化学物质,例如药物和污染物。
基因组编辑技术发展的最终目标是实现任何细胞或生物体中精准的基因组改变。本文我们描述了原生质体系统,该系统利用预组装的 Cas9 核糖核蛋白 (RNP) 复合物在拟南芥、本氏烟、白菜和亚麻荠中实现精准、高效的 DNA 序列改变。Cas9 RNP 介导的双 gRNA 基因破坏在拟南芥原生质体中可达到约 90% 的插入/缺失。为了便于测试任何 Cas9 RNP 设计,我们开发了两个 GFP 报告基因,从而可以灵敏地检测非同源末端连接 (NHEJ) 和同源定向修复 (HDR),编辑效率分别高达 85% 和 50%。当与最佳单链寡脱氧核苷酸 (ssODN) 供体共转染时,RNP 通过 HDR 对 AtALS 基因的精确编辑达到 7%。值得注意的是,预组装引物编辑器 (PE) RNP 介导的精确诱变导致原生质体中 GFP 报告基因回收率为 50%,基因组中特定 AtPDS 突变的编辑频率高达 4.6%。原生质体中 CRISPR RNP 变体的快速、多功能和高效基因编辑为开发、评估和优化基因和基因组操作的新设计和工具提供了宝贵的平台,适用于多种植物物种。