摘要:自从出现头部安装显示器(HMD)以来,研究人员试图在脑 - 计算机界面(BCI)研究中引入虚拟和增强现实(VR,AR)。但是,缺乏研究均包含AR和VR来比较两个环境中的性能。因此,有必要开发可以在VR和AR中使用的BCI应用程序,以允许在两个环境中比较BCI性能。在这项研究中,我们使用基于p300的BCI开发了基于OpenSource的无人机控制应用程序,该应用可用于VR和AR。二十名健康受试者参加了该应用程序的实验。他们被要求控制两个环境中的无人机,并在实验之前和之后填写问卷。我们发现在线性能(p300组件的分类准确性和振幅/潜伏期)和用户体验(满意度,节目,程序,环境,利益,兴趣,兴趣,沉浸式,沉浸感和自我控制感觉)之间没有显着(P300组件的分类准确性和幅度/潜伏期)的显着差异。这表明p300 BCI范式相对可靠,并且在各种情况下都可以很好地工作。
摘要:人类的手是一个复杂而多功能的器官,它使人类能够与环境互动、交流、创造和使用工具。大脑对手的控制是人类认知和行为的一个重要方面,但也是神经科学和工程学面临的一个挑战性问题。本研究的目的是从神经科学的角度回顾手和抓握控制的当前最新技术,重点关注手控制感觉整合背后的大脑机制以及开发可以模仿和与人脑交互的假手的工程意义。大脑通过使用不同的神经通路处理和整合来自视觉、本体感觉和触觉的感觉信息来控制手。可以使用不同的接口(例如肌电图、神经电图和脑电图)来获取用户控制假手的意图。这种和其他感官信息可以通过不同的学习机制来利用,这些机制可以帮助用户适应感官输入或输出的变化,例如强化学习、运动适应和内部模型。本研究总结了手部和抓握控制研究各个方面的主要发现和挑战,并强调了当前方法的差距和局限性。在最后一部分,通过强调需要一种能够弥合大脑和手部之间差距的神经科学方法,提出了手部和抓握控制研究的一些未解决的问题和未来方向。
手部接收感觉刺激并执行运动指令,这些指令整合到日常任务的各种功能操作中。手指运动笨拙低效、力量协调性和力量较差、患手运动控制感觉缺陷是患者最常见的现象。因此,我们的研究团队开发了一系列手部功能控制训练系统,以探索执行功能任务时的力量模式特征,并对功能姿势下的手指力量控制进行训练和评估。通过互动游戏提高患者的积极性,同时整合视觉和听觉反馈以获得更好的干预效果。对于腕管综合征患者,他们在不同任务需求中以更大的手指力量抓握,与较弱的成对手指相关性和特定手指上的力量变化较大相关。此外,还开发了定制设计的计算机化评估和再教育生物反馈原型,用于分析手部抓握表现并监测训练对感觉障碍且无运动缺陷的中风患者的手部协调性的影响。最后,对轻度认知障碍患者的训练显著提高了手部灵活性和认知功能,这与先前的研究结果一致,即精细运动表现可以区分认知障碍患者和健康人。
迷幻药物。使用精心制作的物理环境,同盟表现出所谓的药物的影响以及仔细的期望管理,我们证明了对迷幻药物文献中意识的一些最强的安慰剂影响(24)。基于大脑的干预试验的对照组可能类似于自上而下的安慰剂研究。例如,经颅磁刺激程序包含“几乎所有可能增强安慰剂影响的因素”,包括复杂的科学机械,医学用具,与专家的互动,可靠的机构,可靠的机构和备受宽容的媒体注意力(25)。我们提出,模拟神经科学设备(例如已停用的MRI扫描仪)可以用作类似有效的安慰剂(26)。在适当的情况下,人们可以说服神经科学设备可以读取自己的思想(27),将思想插入头部(28,29),对他们的任务绩效(30)影响,移动四肢(31),甚至唤起神秘的经历(32)。在较早的自上而下的研究中,我们向参与者提出了言语建议,即精心制作(假)脑扫描仪可以激活大脑区域以将思想插入他们的头部。大多数参与者不仅相信这一点,而且许多参与者还报告了扫描仪内部不寻常的经历,包括头痛,非自愿运动,心理感觉和减少的控制感觉(29)。我们怀疑可以将类似的干预措施适应临床领域。我们将尽可能多的上下文因素组合在一起,从而可能是最精心制作的基于安慰剂的文献干预措施。因此,我们开发了一项精心设计的干预措施,利用治疗性遭遇的提示,道具和仪式以及神经科学设备的文化声望。在这项研究中,我们旨在评估这种干预的可行性。
尽管现在对神经可塑性进行了广泛的研究,但曾经有一段时间成人可塑性与主流相反。基本的绊脚石源于Hubel和Wiesel的开创性实验,他们表达了令人信服的证据,表明在发育过程中存在一个关键时期的可塑性,此后大脑根据感觉输入的变化失去了变化的能力。尽管有时代精神说成熟的大脑相对不变,但科学文献中仍有许多成人神经可塑性的例子。有趣的是,这些研究中的一些涉及成年猫的视觉可塑性。甚至更早,有报道说,在背柱病变后,成年大鼠体感丘脑的功能重组,这是通过其他实验确认并扩展的。证明这些发现反映了不仅反应中心损伤,并且为了更好地控制感觉丧失的程度,使用了周围神经损伤,从而消除了使中心途径完好无损的同时消除上升的感觉信息。Merzenich,Kaas和同事使用外围神经过渡揭示灵长类动物体感皮层中明确的重组。此外,这些相同的研究人员表明,这种可塑性在不少于两个阶段进行,一个立即进行,另一种是长时间的。这些发现得到了确认并扩展到更膨胀的皮质剥夺,并进一步扩展到丘脑和脑干。在这里,我们概述了推动这种现象的启发式方法。然后,那里开始了一系列实验,以揭示允许这种可塑性的生理,形态和神经化学机制。最终,Mowery及其同事进行了一系列实验,这些实验仔细地跟踪了灵长类动物体感皮质中的几种谷氨酸(AMPA和NMDA)和GABA(GABAA和GABAB)受体复合物在外周植物损伤后几个时间点的表达水平。这些受体亚基映射实验表明,膜表达水平反映在关键时期发育的早期阶段所见的膜表达水平。这表明,在长时间的感觉剥夺条件下,成年细胞像塑性状态一样恢复到关键时期,即发育概括。