本文介绍了一种寻找配平飞行条件的方法,同时最大化一个或多个运动轴的可用控制权限。最大俯仰或升力控制权限可以在中止着陆情况下找到有趣的应用,而所有运动轴的最大平衡控制权限则是经典最小控制力概念的重新表述。配平问题以约束优化问题的形式提出。约束和目标函数是通过利用可达到力矩集的几何特性获得的,可达到力矩集是一个凸多面体,包含飞机控制效应器可达到的力和力矩。该方法应用于一种名为 PrandtlPlane 的创新型箱翼飞机配置,其双翼系统可以容纳大量控制面,因此可以实现纯扭矩和直接升力控制。在对称和非对称飞行中,比较了配平条件下的控制面偏转,其中俯仰轴、升力轴具有最大控制权限,平衡控制权限最大。结果表明,该方法能够利用攻角或油门设定来获得控制面偏转,从而最大化指定方向上的控制权。
与其他飞行模拟器不同,X-Plane 采用一种称为“叶片元素理论”的技术。该技术使用飞机的实际形状(如模拟器中建模的),并分别分解每个部件上的力。作用于模型每个组件的“空气”力是单独计算并组合的,以产生极其逼真的飞行。当您在 X-Plane 中“驾驶”飞机时,没有任何人为的规则来控制飞机的行为。您的控制输入会移动飞机的控制面,这些控制面会与周围的气流相互作用。因此,您可以认为您真的在驾驶飞机。由于这种技术,必须在 X-Plane 中非常精确地建模飞机,以便其行为与现实生活中的飞机一样。
身体数据框 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 顶部/底部突出部. . . . . . . . . . . . . . . . 16 前部/后部突出部. . . . . . . . . . . . . . . . . . 18 平滑机身. . . . . . . . . . . . . . . . . . . . . . 19 向机身添加其他机体. . . . . . . . . . . . . 19 3.3 塑造机翼. . . . . . . . . . . . . . . . . . . 20 设置基本特征. . . . . . . . . . . . . . . . . . 20 添加副翼、襟翼和其他控制面 . . . . . . . . . . . . . . . . . . . 21 指定副翼、升降舵和其他表面 . . . . . . . . . . . . . . . . . . 22 指定襟翼和前缘缝翼 . . . . . . . . . . . . . . . . . . . . . . 23 为机翼添加控制面 . . . . . . . . . . . . . . . . . . . . 25 添加机身上的减速板 . . . . . . . . . . . . . 27 自定义机翼部件(用于入射角、尺寸和位置) . . . . . . . . . 29 设置机翼的翼型 . . . . . . . . . . . . . . . . . . 30 使机翼可移动 . . . . . . . . . . . . . . . . . 31 设置可变机翼后掠角 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 添加发动机吊架 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3.7 设置牵引钩、绞盘钩、登机门和加油口的位置....................................................................................................................................................................45
第一个民用飞机的电动飞行控制系统由 Aerospatiale 设计并安装在协和式飞机上。这是一个适用于所有控制面的模拟全权限系统。控制面位置指令与操纵杆输入成正比。三个轴上都配有机械备用系统。20 世纪 80 年代初,空中客车 A310 项目在几架民用飞机上出现了第一代采用数字技术的电动飞行控制系统。这些系统控制缝翼、襟翼和扰流板。这些系统的设计具有非常严格的安全要求(控制面失控的可能性必须极小)。由于这些功能的丧失会导致机组人员工作量大幅增加,因此在某些情况下可能会失去系统。
I.简介 HIS 论文是北大西洋公约组织 (NATO) 领导的研究系列论文之一,该系列论文探索了计算流体动力学 (CFD) 方法在稳定性和控制分析方面的能力。本文介绍了通用无人作战飞机 (UCAV) 配置的动态风洞试验。在后续出版物中,CFD 预测将与这些实验测量值进行比较。北约科学技术组织 (STO) 应用车辆技术 (AVT) 任务组 201 以前任任务组 AVT-161 1-9 的研究工作为基础。AVT-201 的另一个重点是预测偏转控制面效应。本文描述了一系列通用 UCAV 配置的风洞试验的强迫振荡实验数据,该配置具有多个后缘控制面。还收集了一组补充静态数据,并在参考文献 10 中报告。
飞机设计需要不同学科的贡献,这些学科通常由飞机开发过程中的不同专业小组代表。在受控飞行系统动力学的设计和评估中,这一点显而易见。具体而言,基本飞行动力学模型包括飞机几何形状和质量的描述以及运动方程和环境影响,例如重力、大气和风/阵风。基本飞行动力学受到空气动力学和推进力的影响,这两个学科涉及其他两个不同的学科。飞行动力学与机载系统相互作用,机载系统可分为激励器、传感器和控件。请注意,激励器由控制面(例如升降舵)和驱动它们的执行器组成。优化飞行动力学和系统之间的相互作用是提高运行效率的一个重要研究领域。例如,控制面可以设计成“恰到好处”的尺寸和动态性能,以尽量减少质量
摘要:高空长航时 (HALE) 飞机由极轻的结构、大翼展和大纵横比组成。这些特性的组合导致飞机系统具有独特的动态行为,其特点是结构和刚体特征模态的强烈相互作用。这些特性对此类飞机的飞行控制算法的稳健性和容错性提出了特定要求。控制系统必须能够让飞机安全地沿着定义的轨道飞行,即使在发生故障的情况下也是如此。由于这些飞机的尺寸较大,它们通常会过度驱动,具有多个冗余控制面。本文利用这种冗余来设计容错控制系统,以确保在故障情况下实现最佳控制性能。该策略基于故障检测和隔离 (FDI) 算法来检测故障的控制面。此故障信息用于在多模型控制方法中切换到备用控制律。FDI 滤波器是使用基于零空间的设计范例设计的,而备用控制器是应用结构化 H ∞ 控制设计技术合成的。
摘要:昆虫利用腹部和其他附肢的动态关节和驱动来增强空气动力学飞行控制。飞行中的这些动态现象有许多用途,包括保持平衡、增强稳定性和扩展机动性。生物学家已经观察和测量了这些行为,但尚未在飞行动力学框架中很好地建模。生物附肢通常相对较大,以旋转方式驱动,并具有多种生物功能。用于飞行控制的技术移动质量往往紧凑、平移、内部安装并专用于该任务。生物飞行器的许多飞行特性远远超过任何同等规模的技术飞行器。支持现代控制技术探索和管理这些执行器功能的数学工具可能会开启实现敏捷性的新机会。本文开发的多体飞机飞行动力学紧凑张量模型允许对具有机翼和任意数量的理想化附件质量的仿生飞机进行统一的动力学和气动模拟和控制。演示的飞机模型是一架类似蜻蜓的固定翼飞机。移动腹部的控制效果与控制面相当,腹部横向运动代替气动舵以实现协调转弯。垂直机身运动实现了与升降机相同的效果,并且包括上下潜在有用的瞬态扭矩反应。当控制解决方案中同时采用移动质量和控制面时,可实现最佳性能。一架机身驱动与传统控制面相结合的飞机可以通过使用本文介绍的多体飞行动力学模型设计的现代最优控制器进行管理。
图 3.1 – 表示动量守恒和钝体尾流的控制面(风洞的固体壁、固体物体和限制有效尾流的恒压表面,两个表面垂直于未受干扰的速度矢量,表面 1 位于物体的上游,表面 2 是尾流横截面最大的表面)[4] ............................................................................................................................. 28
摘要:昆虫利用腹部和其他附肢的动态铰接和驱动来增强气动飞行控制。飞行中的这些动态现象有许多用途,包括保持平衡、增强稳定性和扩展机动性。生物学家已经观察和测量了这些行为,但尚未在飞行动力学框架中很好地建模。生物附肢通常相对较大,以旋转方式驱动,并具有多种生物功能。用于飞行控制的技术移动质量往往是紧凑的、平移的、内部安装的并且专用于该任务。生物飞行器的许多飞行特性远远超过任何同等规模的技术飞行器。支持现代控制技术以探索和管理这些执行器功能的数学工具可能会开启实现敏捷性的新机会。这里开发的多体飞机飞行动力学的紧凑张量模型允许对具有机翼和任意数量的理想附肢质量的仿生飞机进行统一的动力学和气动模拟和控制。演示的飞机模型是一架蜻蜓状的固定翼飞机。移动腹部的控制效果与控制面相当,横向腹部运动代替气动舵以实现协调转弯。垂直机身运动实现了与升降舵相同的效果,并且包括上下可能有用的瞬态扭矩反应。当在控制解决方案中同时使用移动质量和控制面时,可实现最佳性能。使用本文介绍的多体飞行动力学模型设计的现代最优控制器可以管理机身驱动与传统控制面相结合的飞机。