卓越的图像质量(支持星光传感器、智能红外 II 技术和高帧率,以获得出色的图像质量。) LPR 智能搜索(通过搜索目标嫌疑车辆的部分特征,如车辆类型和颜色、车牌颜色、车牌号、方向等,即可快速找到相关视频)
大规模,手动注释的数据集的可用性在人类姿势估计中具有极大的先进研究,从2D单眼图像估计,这与诸如手势识别和动作识别之类的相关性密切相关。当前数据集(例如[1,16,20])主要包含来自我们所谓的轨道视图的图像,即侧面,前后视图,其中最重要的是,诸如对象或分裂的挑战,例如对象或分裂的挑战。他们专注于日常活动,例如站立,坐着和步行。因此,大部分研究都致力于解决遮挡和专业数据集([19,41]),以评估姿势估计模型在涉及封闭个体的情况下的有效性。不寻常的观点的问题受到了较少的关注。在我们所说的极端观点中(顶部和bot-
基于无人机的运动目标跟踪技术被广泛应用于自动巡检、应急处置等诸多领域。现有的运动目标跟踪方法通常存在计算量大、跟踪效率低的问题。受限于无人机平台的算力,基于无人机平台采集的视频数据对多目标进行实时跟踪分析是一项艰巨的任务。本文提出了一种针对无人机实时跟踪任务的带记忆的特定目标滤波跟踪(TSFMTrack)方法,该方法包括用于捕捉目标外观特征的轨迹滤波模块(TFM)和用于每帧边界框关联的轨迹匹配模块(TMM)。通过在流行的MOT和UAV跟踪数据集上与其他SOTA方法的实验比较,TSFMTrack在准确性、计算效率和可靠性方面表现出明显的优势。并且将TSFMTrack部署在类脑芯片Lynchip KA200上,实验结果证明了TSFMTrack在边缘计算平台上的有效性以及适合无人机实时跟踪任务。
在采用全新、最先进的 APS 探测器芯片技术来减小尺寸和重量的同时,最大限度地利用了传统技术。这从一开始就保证了这款多功能相机的耐用性、可靠性、性能和价格实惠性。
推荐引用 推荐引用 Alblooshi,Fatma Sabeel,“阿联酋使用闭路电视摄像机进行更智能监控的人工智能”(2021 年)。论文。罗彻斯特理工学院。访问自
摘要 - 我们提出了一种估算事件数据的密集连续时间光流的方法。传统的致密光流方法计算两个图像之间的像素位移。由于缺少信息,这些方法无法在两个图像之间的盲时间中恢复像素轨迹。在这项工作中,我们表明可以使用事件相机中的事件来计算每像素,连续的光流。事件由于其渐进性和微秒响应时间而提供了有关像素空间中运动的时间细粒信息。我们利用这些好处来通过参数化的B´ezier曲线在连续的时间内密集地预测像素轨迹。为了实现这一目标,我们构建了一个具有强大诱导偏见的神经网络:首先,我们使用事件数据及时构建了多个顺序相关量。第二,我们使用B´ezier曲线在沿轨迹的多个时间戳上为这些相关量索引。第三,我们使用检索到的相关性迭代更新B´ezier曲线表示。我们的方法可以选择包括图像对,以进一步提高性能。据我们所知,我们的模型是可以从事件数据中回归密集的像素轨迹的第一种方法。为了训练和评估我们的模型,我们引入了一个合成数据集(Multiflow),该数据集(Multiflow)具有每个像素的移动对象和地面真相轨迹。开源代码和数据集向公众发布。我们的定量实验不仅表明我们的方法在连续的时间内成功预测了像素轨迹,而且在多速和DSEC-Flow上的传统两视频像素位移中也具有竞争力。
摘要人类机器人合作(HRC)在先进的生产系统中越来越重要,例如在行业和农业中使用的系统。这种类型的协作可以通过减少人类的身体压力来促进生产率的提高,从而导致伤害减少并改善士气。HRC的一个关键方面是机器人安全遵循特定的人类操作员的能力。为了应对这一挑战,提出了一种新的方法,该方法采用单眼视力和超宽带(UWB)收发器来确定人类目标相对于机器人的相对位置。UWB收发器能够用UWB收发器跟踪人类,但具有显着的角度误差。为了减少此错误,使用深度学习对象检测的单眼摄像机来检测人类。使用基于直方图的滤波器结合了两个传感器的输出,可以通过传感器融合来减少角度误差。此过滤器项目并将两个源的测量值与2D网格相交。通过结合UWB和单眼视觉,与单独的UWB定位相比,角度误差的降低了66.67%。这种方法表明,以0.21 m/s的平均速度跟踪人行走时,平均处理时间为0.0183,平均定位误差为0.14米。这种新颖的算法有望实现有效和安全的人类机器人合作,为机器人技术提供了宝贵的贡献。
摘要 - 常规摄像机在传感器上捕获图像辐照度(RAW),并使用图像信号处理器(ISP)将其转换为RGB图像。然后可以将图像用于各种应用中的摄影或视觉计算任务,例如公共安全监视和自动驾驶。可以说,由于原始图像包含所有捕获的信息,因此对于视觉计算而言,使用ISP不需要将RAW转换为RGB。在本文中,我们提出了一个新颖的ρ视框框架,以使用原始图像进行高水平的语义理解和低级压缩,而没有数十年来使用的ISP子系统。考虑到可用的原始图像数据集的稀缺性,我们首先开发了一个基于无监督的Cyclegan的不成对循环2R网络,以使用未配对的RAW和RGB图像来训练模块化的ISP和Inverse ISP(Invisp)模型。然后,我们可以使用任何最初在RGB域中训练的现有RGB图像数据集和Finune不同的模型来生成模拟的原始图像(SIMRAW),以处理现实世界中的相机原始图像。我们使用原始域yolov3和摄像头快照上的原始图像压缩机(RIC)演示了原始域中的对象检测和图像压缩功能。定量结果表明,与RGB域相比,原始域任务推断提供了更好的检测准确性和压缩效率。此外,所提出的ρVision在各种摄像机传感器和不同的任务特定模型上概括了。采用ρ视频的另外一种有益的是消除对ISP的需求,从而导致计算和处理时间的潜在减少。
摘要在这项研究中,我们从安装在车辆上的3D激光雷达和外部交通监视摄像头的图像中融合数据,以创建经常洪水泛滥的道路部分的3D表示。这项研究中的LIDAR的点云数据是从ODU校园附近Norfolk的W 49街的一条路段收集的。交通监视摄像头安装在同一地区的公共停车大楼上。LIDAR在车辆穿越该部分时会收集连续的点云框架。使用ICP注册方法将与外部摄像头监控的多个与各个道路相关的LIDAR框架首先合并为单位点云,代表路段的局部高分辨率数字高程模型(DEM)。然后,将结果的DEM投射到监视摄像头捕获的被淹没的道路的图像上。到此目的,采用了摄像机校准技术来估计转换参数。相机校准方法依赖于一个包含点及其相应像素的数据集中的目标图像。生成了点的虚拟网格和相应的像素以运行相机校准函数。提到的数据集是借助激光雷达的内部相机上的投射点云而生成的,从而使我们能够识别对象和Curbsides。还采用了观点几何原则来创建DEM。投影结果显示了用于摄像机校准的技术技术的成功性能。深度估计是在外部相机记录的洪水图像上使用投影的DEM模型进行的。
Acumen AiP-O53N Acumen AiP-P24N Acumen AiP-P24V Acumen AiP-P53N Acumen AiP-R24K Acumen AiP-U24K Acumen AiP-U53E Acumen AiP-U53K Acumen AiP-V24K Acumen AiP-Y04Z Acumen AiP-Y14D Acumen AiP-Y34H Acumen Ai-S12xx Acumen AN-CC500PD AcutVista(通用) A-Gear IPCam ECHO AirLink 101 AIC250 AirLink 101 AIC250W AirLink 101 AIC650 AirLink 101 AIC650W AirLink 101 AIC747 AirLink 101 AIC777W AirLink 101 AICN500 AirLink 101 AICN500W AirLink 101 AIL310 AirLive IP-150CAM AirLive IP-200PHD AirLive OD-300CAM AirLive OD-325HD AirLive OD-325HD-2.5MM AirLive OD-600HD AirLive POE-100 AirLive POE-100CAMv2 AirLive POE-100HD AirLive POE-200 AirLive POE-200CAMv2 AirLive POE-200HD AirLive POE-250HD AirLive POE-260 AirLive POE-2600HD AirLive POE-260CAM AirLive WL-1000CAM AirLive WL-1200CAM AirLive WL-2000 AirLive WL-2000CAM AirLive WL-2600 AirLive WL-2600CAM AirLive WL-350HD