单元-I复制第1章:开花植物的有性繁殖;男女配子体的发展;授粉 - 类型,机构和例子;繁殖装置;花粉 - 杆子相互作用;双重施肥;施肥事件事件 - 胚乳和胚胎的发展,种子的发展和果实的形成;特殊模式 - pomixis,parthenocarpy,polyembryony;种子分散和果实形成的意义。第2章:人类繁殖男性和女性生殖系统;睾丸和卵巢的微观解剖学;配子发生 - 植物发生和卵子发生;月经周期;受精,胚胎发育直至胚泡形成,植入;怀孕和胎盘形成(基本思想);分娩(基本思想);哺乳(基本思想)。第3章:生殖健康需求生殖健康和预防性传播疾病(STD);节育 - 妊娠的需求和方法,避孕和医疗终止(MTP);羊膜穿刺术;不育和辅助生殖技术-IVF,ZIFT,礼物(一般意识的基本思想)。第5章:遗传搜索遗传物质和DNA作为遗传物质的分子基础; DNA和RNA的结构; DNA包装; DNA复制;中央教条;转录,遗传密码,翻译;基因表达和调节-Lac操纵子;基因组,人类和水稻基因组项目; DNA指纹。单位-III:生物学与人类福利单元II遗传学和演变第4章:遗传和变异遗传和变异的原理:Mendelian继承;偏离孟德尔主义 - 不完全的优势,共同主导,多个等位基因和血型的继承,多效性;多基因继承的基本思想;继承理论;染色体和基因;性别决定 - 在人类,鸟类和蜜蜂中;连锁和交叉;性别联系的继承 - 血友病,色盲;人类中的孟德尔疾病 - 丘脑贫血;人类的染色体疾病;唐的综合症,特纳和克莱恩·费尔特的综合症。第6章:生命的进化起源;生物进化的生物进化和证据(古生物学,比较解剖学,胚胎学和分子证据);达尔文的贡献,现代的综合进化论;进化的机制 - 变异(突变和重组)和自然选择,示例,自然选择的类型;基因流和遗传漂移;哈迪 - 温伯格的原则;自适应辐射;人类进化。
癌症是我们年龄的重要文明问题。科学家继续寻找负责致癌过程的新因素。在1993年,维克多·安布罗斯(Victor Ambros),罗莎琳(Rosalind Lee)和隆达·费恩鲍姆(Rhonda Feinbaum)发现,埃列哥秀丽隐杆线虫基因lin-4涉及控制这种非寄生虫线虫的幼虫发育,没有编码蛋白质,但没有编码蛋白质,而是一对短rna-about 22和大约61个基础。相关的RNA反过来是对3'UTR LIN-14基因结束时许多地方的反义互补的[1]。进一步的研究表明,LIN-4基因产物通过减少LIN14蛋白的量来调节LIN-14基因,同时保持LIN-14的mRNA浓度[2]。最后,有人认为这些短RNA对LIN-14的作用具有抑制作用,从而调节了从秀丽隐杆线虫的第一个幼虫阶段到第二阶段的转化开始[2]。RNA被认为是丰富的microRNA家族的第一个,主要是执行调节功能[2]。接下来的几年带来了新的microRNA分子。在许多生物体中,不仅在哺乳动物,昆虫,结节或植物中都观察到它们的存在[1]。绝大多数microRNA仍然在进化上保守[1,2]。单个microRNA通常也存在于特定细胞中,例如肝细胞中的miR-122 [1]。microRNA的基因以非常多样化的方式位于基因组中。它们是操纵子的一部分,发生在蛋白质编码序列的一部分之间[2]。它们发生在未翻译的外显子,内含子或序列中[2]。它们可能构成一个独立的转录单元[2]。作为内含子的一个组成部分,可以将它们与编码蛋白质的整个基因一起转录,从而导致microRNA和mRNA(PRE-mRNA)[1]。MicroRNA的基因由聚合酶II或III RNA转录[1,2]。microRNA的基因通常是在被转录为多孔子转录单元的簇中组织的[3]。它们可以在蛋白质编码序列和作为独立转录单元的功能之间发生,它们也可以位于编码序列中[4]。转录单元的这种布置可以导致miRNA和mRNA转录本的同时形成[5]。miRNA基因以某种方式组织
<分为分子场中最常见的技术。必须证明他可以详细阐述有关核酸(DNA和RNA)之间关系的参数,病毒,突发性和真核细胞的基因组组织,核酸与蛋白质与蛋白质之间的相互作用以及上述生物学过程之间的相互作用,并了解其因果关系。从关于核酸的结构和功能的概念开始,必须知道主要分子生物学技术的基本原理。能够应用知识和理解学生必须能够独立处理并应用课程中获得的信息,以了解生物学的分子视觉,并指出和/或设计了主要方法论方法,独立评估旨在分析DNA,RNA和蛋白质的实验结果,在诊断,食物,食物,环境,环境和工业和工业和工业和工业领域也应用知识。 学生必须能够通过独立于分子领域的文本和科学文章来应用获得的知识来更新自己,并获得遵循专业研讨会,会议,大师的能力。 < <分为分子生物学领域。 程序 - 促脂碱,核苷,核苷酸。 核酸的一级和二级结构。 三维DNA DNA结构:DNA B,DNA A和DNA Z. DNA结构的动力学。 RNA结构。能够应用知识和理解学生必须能够独立处理并应用课程中获得的信息,以了解生物学的分子视觉,并指出和/或设计了主要方法论方法,独立评估旨在分析DNA,RNA和蛋白质的实验结果,在诊断,食物,食物,环境,环境和工业和工业和工业和工业领域也应用知识。学生必须能够通过独立于分子领域的文本和科学文章来应用获得的知识来更新自己,并获得遵循专业研讨会,会议,大师的能力。 <<分为分子生物学领域。程序 - 促脂碱,核苷,核苷酸。核酸的一级和二级结构。三维DNA DNA结构:DNA B,DNA A和DNA Z. DNA结构的动力学。RNA结构。RNA结构。DNA上层建筑。拓扑异构酶。(1CFU)DNA变性和肾脏化。基因组的维度和复杂性。转座。病毒和促进物中遗传物质的组织。DNA病毒。RNA病毒,逆转录病毒和逆转录。 圣体式中遗传物质的组织:染色质,核小体,组蛋白,染色体。 伊斯顿的化学变化(istonic代码)和基因表达。 istonic基因和变体。 (2CFU)DNA的重复。 <离婚开始,延长和期限。 病毒,突发性和真核生物复制的分子机制示例。 蛋白质参与重复合成。 大肠杆菌的DNA聚合酶及其特征。 真核生物的DNA聚合酶。 端粒酶。 (1CFU)RNA的类型及其丰度。 在促进症中的转录:RNA聚合酶。 转录单元。 rRNA和TRN转录本的成熟。 关于Procariali(操纵子和衰减)转录的调节的注释。 转录到真核生物:RNA聚合酶I,II,III。 <特定于女主角的启动子。 mRNA,rRNA和tRNA的主要转录本的成熟。 RNA编辑。 内含子的概念。 s-splicing机制,前mRNA,pre-tRNA和rRNA。 变形。 绝缘子。RNA病毒,逆转录病毒和逆转录。圣体式中遗传物质的组织:染色质,核小体,组蛋白,染色体。伊斯顿的化学变化(istonic代码)和基因表达。istonic基因和变体。(2CFU)DNA的重复。<离婚开始,延长和期限。病毒,突发性和真核生物复制的分子机制示例。蛋白质参与重复合成。大肠杆菌的DNA聚合酶及其特征。真核生物的DNA聚合酶。端粒酶。(1CFU)RNA的类型及其丰度。在促进症中的转录:RNA聚合酶。转录单元。rRNA和TRN转录本的成熟。关于Procariali(操纵子和衰减)转录的调节的注释。转录到真核生物:RNA聚合酶I,II,III。<特定于女主角的启动子。mRNA,rRNA和tRNA的主要转录本的成熟。RNA编辑。 内含子的概念。 s-splicing机制,前mRNA,pre-tRNA和rRNA。 变形。 绝缘子。RNA编辑。内含子的概念。s-splicing机制,前mRNA,pre-tRNA和rRNA。变形。绝缘子。基因表达调整:染色质结构和DNA甲基化。转录调控和转录因子。增强剂和消音器。转移后调整。统一静音(siRNA,microRN)。lncrna。稳定性和真核生物的RNA的降解。(2,5 CFU)
大肠杆菌细胞能够适应高渗透压,尽管在这些条件下生长会减慢。当细胞转移到较高的渗透压时,它们会瞬时停止生长。然后,在滞后后,他们恢复增长,增加了两倍的时间。在上一篇论文中,我们报告说,在37°C的最小培养基中,在几分钟内触发了从300到1,500 MOSM的渗透升级,几个代谢性干扰(可以汇总(23),如下所示。(i)细胞生长停止50至60分钟:渗透转移越大,生长恢复前的滞后持续时间越长。(ii)TRK系统的K+运输立即打开(24),以便在40至50分钟内蜂窝K+含量增加了100%。(iii)净蛋白和DNA合成和细胞分裂暂时停止40至50分钟。这些结果引起的问题是,诸如渗透升高之类的环境应力因素是否会引起一组特定的蛋白质,热休克和氧化应激也是如此。不同的微生物对渗透转移的反应(例如,大杆菌的降档;蓝细菌的降档以及革兰氏阳性和革兰氏阴性阴性的肉芽杆菌)似乎对蛋白质合成的载量修饰,这是由bidimentimentials electimentialsectimentialsectimentional prophtimentials prophentic蛋白蛋白质分析所表明的。到目前为止,这些反应还没有显示出明显的共同点。虽然卤菌物仅增加了在中等渗透压降低时增加几种热激蛋白的合成(8),但氰基细菌增加了几种热休克蛋白和盐应激特异性蛋白的合成,并抑制了一些其他对渗透量的响应的蛋白质的合成(3)。在枯草芽孢杆菌中,一般应激蛋白和特定蛋白质的合成也已被证明是通过渗透性升级刺激的(13)。在大肠杆菌中检测到了三种渗透升级诱导的蛋白质(7);它们被认为既不是热休克蛋白也不是一般应激蛋白,而是参与寡糖代谢的酶(16),也可能是由普鲁操纵子编码的BETAINE转运系统的成分(2,6)。本报告的重点是DNAK蛋白,DNAK蛋白是蛋白质热休克组的成员(12,25),被认为可以调节大肠杆菌(30)中的热休克反应,并可能参与(i)染色体(28),X partiophage(X),X细菌噬菌体(1,20,32),和P1 p1 plasmid(31)plastipation(33)(31)
jbokor@berkeley.edu Spintronics领域涉及对固态设备中的旋转和电荷运输的研究。超快磁性涉及使用飞秒激光脉冲来操纵子秒时尺度上的磁性,包括无螺旋性无依赖性的全光开关。我们通过使用超快光电传输(Auston)开关使用Picsecond电荷电流脉冲结合了这些现象(图1)诱导铁磁GDFECO薄膜磁化的确定性,可重复的超快逆转[1]。使用9 ps持续时间电流脉冲,磁化强度在〜10 ps中反转,比任何其他电气控制的磁开关都要快一个数量级,并且展示了不需要旋转偏光电流或旋转旋转转移/Orbit/Orbit torques的根本新的电气开关机制。(图2)此外,开关所需的能量密度较低,投影仅需4 fj即可切换A(20 nm)3个单元。通过非平衡热激发的这种超快磁化逆转现象主要限于基于GD的Ferrimagnet,例如在图2所示的实验中使用的GDFECO合金。1和2。为了将这种快速开关与读数集成,需要具有高隧道磁力电阻(TMR)的磁性隧道连接。然而,对于使用GDFECO的设备报告的TMR值太小(≈0.6%),用于实际应用[2]。在存在面内对称性磁场的情况下,将电流脉冲应用于重金属/铁磁性薄膜异质结构。因此,切换具有独立光学脉冲的铁磁铁非常有趣,然后可以在高TMR存储器单元中作为存储层实现。We have shown how to transfer the ultrafast switching of GdFeCo to a ferromagnet (in our case Co/Pt multilayers) using Ruderman–Kittel–Kasuya– Yosida (RKKY) exchange coupling mediated HI- AOS of the ferromagnet layer driven by the HI-AOS of the ferrimagnet layer [3, 4].该技术通常适用于其他铁磁体,然后可用于使用高TMR的开关磁性结构状态进行MTJ读数。我们还表明,6-10 ps持续时间电流脉冲可用于直接和确定性地切换通过自旋 - 轨道扭矩(SOT)[5]的铁磁薄钴膜的平面外磁化。取决于相对电流
最近,我们描述了一个调节系统,该系统允许在较高的真核细胞系(1),植物(2)和动物(3,4)中严格控制单个基因活性。该系统的基本组件是(i)一个RNA聚合酶H最小启动子,放置在多个操作序列(TETO)的下游,其大肠杆菌tnjo Tetracycline抗性操纵子和(ii)TET抑制剂(TET)(TETR)和Simples Simples Simplex Virus Protein 16(vpp16(vp p p p)(ii)(ii)(ii)融合。在不存在四环素(TC)的情况下,TTA与TET算子结合以激活最小启动子的转录,而在TC存在下,它的关联并因此阻止了其转录激活。在TTA结合后,源自巨细胞病毒IE启动子(PHCMV,5)的最小启动子,并融合到七个TETO序列中,当在短暂性表达测定中进行比较时,在HELA细胞中的父启动子的明显强度达到了显着的强度(6)。TTA的高激活潜力及其结合位点在PHCMV*_1 [(1)中的排列;参见图ia]建议设计双向启动子,该设计将允许同时调节来自中心位置多个TETO序列的两个转录单元(图la)。这样的启动子对于多种实验方法应该有用。首先,它可以允许以化学计量量的两种基因产物的合成,这通常是产生异二聚体(或异源 - 寡聚)蛋白的先决条件。在这里,我们报告了双向启动子的构建(PBI-L;图第二,通过将不同效率的最小启动子融合到中心位置的TETO序列,可以在不同但定义的水平上共同调节两个基因产物。第三,通过在双向启动子的一侧整合适当的报告基因,可以通过报告基因函数来监测对不可读基因的调节。后一种可能性也可能有助于在细胞和有机水平上 - 筛选正确整合的表达单元,以控制感兴趣的基因。1a)表明,该启动子以定量方式共同调节了编码P-半乳糖苷酶和荧光素酶的两个报告基因。此外,我们描述了一个矢量系列,很容易允许将PBI-I用于各种目的。图1a所示的广义发散转录单元由基因X的双向启动子组成,然后是
图 1. crRNA 性能受上游间隔物的 GC 含量影响 (A) CRISPR-Cas12a 操纵子由 Cas 基因和一个 CRISPR 阵列组成。(B) 每个 crRNA 由一个重复序列和一个间隔物组成。预处理重复序列包含一个 ~16-18-nt 片段,此处称为 CRISPR 分隔符,该片段由 Cas12a 和一种未知酶切除。(C) 在哺乳动物细胞中表达 Cas12a 阵列时,之前已省略了分隔符。我们想了解分隔符是否有助于使 crRNA 免受间隔物中二级结构的负面影响。(D) 我们设计了由两个 crRNA 组成的 CRISPR 阵列,第一个具有非靶向无义间隔物,第二个靶向 GFP 启动子,该启动子在 HEK293T 细胞中基因组整合。(E) 实验设置;分析 GFP 荧光作为阵列性能的衡量标准。 (F) CRISPR 阵列可以显示出对无义间隔物的组成的超敏感性。在极端情况下,将最后一个核苷酸从 T 替换为 G 可能导致 GFP 激活几乎完全终止。(G) 51 个 CRISPR 阵列的文库,其中第一个 crRNA 包含一个具有不同 GC 含量的无义间隔物,第二个 crRNA 靶向 GFP。无义间隔物的 GC 含量与 GFP 荧光之间存在强烈的负相关性。每个点代表 51 个 CRISPR 阵列中的一个(三个重复)。根据阵列启用的 GFP 荧光水平将阵列分为三组。框表示在 I 和 J 中分析的两组。(HJ) 对于每个组,计算了滑动 5-nt 窗口的平均 GC 含量。性能最佳的阵列是无义间隔物在其 3' 端恰好具有低 GC 含量的阵列。一些阵列因其无义间隔物的 GC 含量 ( G ) 而显示出意外的高或低 GFP 活性。这些阵列在其无义间隔物的 3' 端含有低 ( I ) 或高 ( J ) GC 含量,这表明最后几个碱基的 GC 含量是阵列性能的重要预测因素。HJ 中的阴影区域表示标准误差。( K ) 了解无义 crRNA 中 3-nt 区域 GC 含量的预测能力 (方法)。( L ) 显示预测的二级结构 (-Δ(最小自由能)) 和 51 个无义间隔物的 GC 含量之间关系的图。
需要特定的c c类型的转换类型,这些转换不是天然发生的。5为了利用这些过程中的巨大酶良好的益处,已经设计了人工酶来产生新的催化反应性。6 - 8个促酶,从而产生基本的酶,然后可能会受到定向进化的能力,以实现通常与酶催化相关的高活性和选择性。9,10然而,尽管有明显的进展,但大多数人促酶的催化效率尚未与天然酶相媲美。11迄今为止,使用人工酶的大多数定向进化运动仅针对催化中心近距离的残留物,以直接影响其化学环境。越来越清楚的是,就像天然酶一样,整个蛋白质的12个结构合作也需要与人工酶促进酶进行催化。例如,刘易斯和同事观察到在模型环丙烷化反应中,在引入脱离活性位点的突变后,由人工hodios的模型环化反应提高了对映选择性。13 o s,远端突变的引入产生由蛋白质的先天结构动力学决定的细微结构重排,该结构动力学已在天然酶的进化中被逐渐构成。18,19是Hilvert等人设计的KEMP消除酶HG3.17的局部示例。14,15那些可以间接地通过调节结构动力学的催化活性的残基称为动力学的远端位点或热点。16,17针对定向演化算法中这些热点的16,17可以将构象动力归为催化生产构象,从而导致高度效率高的设计师酶。能够通过开发具有催化能力的构象合奏的速率加速度提高10 8倍。20当前,它们的鉴定阳离子o cen依赖于广泛的分子动力学(MD)模拟,这对工作的吞吐量构成了显着的限制。21尽管最近已经描述了基于机器的新策略并保持了大大减轻计算费用的希望,但对大型培训数据集的需求阻碍了他们在鲜为人知的系统中的应用。为了确定远端突变和远距离网络在人工酶中的作用,我们以23,24的lactocococococcal多药耐药性调节剂(LMRR)为示例,是探讨了以较广泛的新型到Nature Adectivitivitivities量身定制的混杂蛋白SCA效率的示例。该蛋白质属于padr遗传因素的PADR家族,并调节乳酸乳酸菌中LMR操纵子的表达。lMRR的特征是独特的构象thimational质量和结构可塑性25,26,在其大型恐惧孔中引起了宽阔的配体滥交。然后将这些基本酶定向进化,从而导致专业酶显着增加活性和(对映)的选择性。引入各种人工催化部分,金属复合物,27个非典型氨基酸(NCAA),28甚至两者均为29个具有多种新型催化性活性的endow LMRR。但是,迄今为止,迄今为止,定向进化仅集中在孔内的残基上,以优化新创建的活性位点的结构。在这里,我们展示了如何通过利用LMRR的构象动力学来进一步增加这些设计师酶之一的活性。
01。农业生物技术单元1:细胞结构和功能原核和真核细胞结构,细胞壁,质膜,细胞细胞器的结构和功能:液泡,线粒体,质体,高尔基体,Golgi Appratus,er,Er,er,过氧化物症。细胞分裂,细胞周期的调节,蛋白质分泌和靶向,细胞分裂,生长和分化。 单元2:碳水化合物,脂质,蛋白质和核酸的生物分子和代谢结构以及功能,碳水化合物的合成,糖酵解,HMP,柠檬酸周期和代谢调节,氧化磷酸化和氧化磷酸化和底物水平磷酸化磷酸化,植物磷酸化,植物,植物,植物,植物,Hormones,Hormones。 功能分子,抗氧化剂,营养前体,HSP,抗病毒化合物。 单元3:酶学酶,结构构象,分类,测定,分离,纯化和表征,催化特异性,作用机制,活性位点,调节酶活性。 Unit 4: Molecular Genetics Concept of gene, Prokaryotes as genetic system, Prokaryotic and eukaryotic chromosomes, methods of gene isolation and identification, Split genes, overlapping genes and pseudo genes, Organization of prokaryotic and eukaryotic genes and genomes including operan, exon, intron, enhancer promoter sequences and other regulatory elements. 突变自发,诱导和位置,在细菌,真菌和病毒中重组,转化,转导,结合,转座元素和转座。 翻译机制及其控制,翻译后修改。细胞分裂,细胞周期的调节,蛋白质分泌和靶向,细胞分裂,生长和分化。单元2:碳水化合物,脂质,蛋白质和核酸的生物分子和代谢结构以及功能,碳水化合物的合成,糖酵解,HMP,柠檬酸周期和代谢调节,氧化磷酸化和氧化磷酸化和底物水平磷酸化磷酸化,植物磷酸化,植物,植物,植物,植物,Hormones,Hormones。功能分子,抗氧化剂,营养前体,HSP,抗病毒化合物。单元3:酶学酶,结构构象,分类,测定,分离,纯化和表征,催化特异性,作用机制,活性位点,调节酶活性。Unit 4: Molecular Genetics Concept of gene, Prokaryotes as genetic system, Prokaryotic and eukaryotic chromosomes, methods of gene isolation and identification, Split genes, overlapping genes and pseudo genes, Organization of prokaryotic and eukaryotic genes and genomes including operan, exon, intron, enhancer promoter sequences and other regulatory elements.突变自发,诱导和位置,在细菌,真菌和病毒中重组,转化,转导,结合,转座元素和转座。翻译机制及其控制,翻译后修改。单元5:遗传信息的基因表达,操纵子概念,原核生物和真核生物转录的转录机制,转录单位,调节序列,增强序列和增强剂,激活因子,激活因子,共激活因子,共激活因子,共抑制剂,原核生物和真核生物的转化因子和促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进剂,促进因遗传密码。
超螺旋和拓扑性质。拓扑异构酶。细菌类核。组蛋白和核小体的性质和组装。染色质的高级结构。组蛋白的翻译后修饰。溴多胺和染色质结构域。表观遗传学。原核生物和真核生物的基因组。复制模型。DNA合成。细菌DNA聚合酶。校对和缺口翻译。复制子模型。OriC和半甲基化。Ter/Tus。真核细胞核中的复制工厂。ARS结构和复制控制。酶学。前RC和前启动复合物。复制抑制剂,如化疗药物和抗病毒药物。端粒和端粒酶的结构、功能和意义。DNA损伤和修复。基因组作为动态实体。体细胞和种系突变。SNP。内在和外在损伤。化学和物理诱变剂。原核生物和真核生物中的去除、逆转和损伤避免系统。MUT 系统。BER 系统。糖基化酶的重要性。安全系统。NER 系统:UvrABCD 和 XP 蛋白。GG-NER 和 TC-NER。光解作用、MGMT、AlkBH。损伤耐受机制。TLS。细菌中的 SOS 反应。单丝和双丝断裂。HR 和 NHEJ。由于修复系统突变而导致的人类疾病。位点特异性重组。重组酶。Lambda 噬菌体。Cre-Lox 系统和 KO 小鼠。简单和复杂的转座子。SINE 和 LINE 元素、Alu 序列。原核生物和真核生物中的 RNA。结构、类型和特性。细菌 RNA 聚合酶和相关因子。转录单位。转录步骤。细菌启动子中的共识序列。终止机制。抑制剂。 Lac、ara 和 trp 操纵子。阳性和阴性对照。真核细胞中的 RNA 类别。RNA 聚合酶 (CTD) 的结构和功能。三种启动子的特征。基础转录机制。TFIIH。反式激活因子、辅激活因子。CpG 岛甲基化。组蛋白密码。长程调节剂。DNA 结合蛋白的功能域 (HTH、HD、HLH、ZF、LZ)。RNA 成熟、核运输和转录后控制。加帽类型。添加 polyA。CTD 的变化。外显子和内含子。外显子改组。四类内含子及其去除机制。剪接体和剪接位点。AT-AC 剪接。EJC 复合体。可变剪接。ESE 和 ESS 序列、SR 和 hnRNP 蛋白。SMN 基因。剪接和病理。rRNA 和 tRNA 加工反应。核糖体基因。 SnoRNA 和核仁功能。RNA 编辑。插入和转换编辑。人类 RNA 编辑的示例。细胞核和细胞质中的 RNA 周转。外泌体。无义介导的 mRNA 衰变 (NMD)。非编码 RNA。小 RNA 在细胞中的功能。RNA 干扰。siRNA。微小 RNA 的生物发生。miRNA、长链非编码 RNA、环状 RNA 的作用机制。逆转录病毒的一般信息。遗传密码和翻译。遗传密码的性质和特征。线粒体密码。ORF。tRNA 的特征。不常见碱基。aa-tRNA 合成酶的功能和类别。遗传密码的翻译重编码和扩展。SeCys。核糖体是一种核酶。原核生物和真核生物的翻译阶段。不同的启动机制。能量成本。NSMD。细菌中的 tmRNA。抑制剂。蛋白质的翻译后修饰、分选和降解。折叠和错误折叠。朊病毒。HSP60 和 HSP70。泛素和泛素化系统。SUMO 化糖基化。蛋白酶体。肽信号。蛋白质分选。线粒体输入。线粒体基因组细胞中的线粒体可塑性。人类线粒体基因组。遗传、结构、复制及其表达的原理。线粒体 DNA 中的改变。DNA 克隆的原理。修饰限制系统。克隆载体。cDNA 合成。基因组 DNA 和 cDNA 文库。TA 克隆。表达克隆。基因表达沉默。基因治疗。数据库。基因组编辑元件(Talen、Zn 指、CRISPR/Cas9 系统)。PCR 和 DNA 测序。PCR 的特性。PCR-RFLP。实时 PCR、DNA 测序。NGS。核酸杂交。杂交原理。熔点和严格性。探针制备:切口平移。Southern、Northern、杂交测定。蛋白质印迹。