癌症是我们年龄的重要文明问题。科学家继续寻找负责致癌过程的新因素。在1993年,维克多·安布罗斯(Victor Ambros),罗莎琳(Rosalind Lee)和隆达·费恩鲍姆(Rhonda Feinbaum)发现,埃列哥秀丽隐杆线虫基因lin-4涉及控制这种非寄生虫线虫的幼虫发育,没有编码蛋白质,但没有编码蛋白质,而是一对短rna-about 22和大约61个基础。相关的RNA反过来是对3'UTR LIN-14基因结束时许多地方的反义互补的[1]。进一步的研究表明,LIN-4基因产物通过减少LIN14蛋白的量来调节LIN-14基因,同时保持LIN-14的mRNA浓度[2]。最后,有人认为这些短RNA对LIN-14的作用具有抑制作用,从而调节了从秀丽隐杆线虫的第一个幼虫阶段到第二阶段的转化开始[2]。RNA被认为是丰富的microRNA家族的第一个,主要是执行调节功能[2]。接下来的几年带来了新的microRNA分子。在许多生物体中,不仅在哺乳动物,昆虫,结节或植物中都观察到它们的存在[1]。绝大多数microRNA仍然在进化上保守[1,2]。单个microRNA通常也存在于特定细胞中,例如肝细胞中的miR-122 [1]。microRNA的基因以非常多样化的方式位于基因组中。它们是操纵子的一部分,发生在蛋白质编码序列的一部分之间[2]。它们发生在未翻译的外显子,内含子或序列中[2]。它们可能构成一个独立的转录单元[2]。作为内含子的一个组成部分,可以将它们与编码蛋白质的整个基因一起转录,从而导致microRNA和mRNA(PRE-mRNA)[1]。MicroRNA的基因由聚合酶II或III RNA转录[1,2]。microRNA的基因通常是在被转录为多孔子转录单元的簇中组织的[3]。它们可以在蛋白质编码序列和作为独立转录单元的功能之间发生,它们也可以位于编码序列中[4]。转录单元的这种布置可以导致miRNA和mRNA转录本的同时形成[5]。miRNA基因以某种方式组织
主要关键词