针对锂电池的热失控行为,研究人员提出了多种管理技术,包括风冷、液冷、相变材料冷却等。上述热管理方式中,液冷比热容较大,冷却效果好,更容易实现电池温度均匀分布。液冷的主要缺点是系统总重量大、成本高、可靠性差。PCM冷却具有能耗低、系统配件简单、成本低等优点,但由于PCM固化时间长,无法满足持续散热的要求。鉴于成本低、工业设计简单,风冷系统是应用最广泛的锂电池冷却系统,常用于电动汽车,尤其是踏板车。一般分为主动和被动两种。
硅通孔技术是一种有前途的、可优先实现三维集成电路(3-D IC)可靠互连的方法,可将多个芯片的热量沿垂直方向传递到热沉。本文提出了一种新的硅通孔(TSV)通用模型来研究3-D IC的热性能。首次研究了锥环TSV的传热特性。详细比较和分析了不同侧壁倾角和TSV绝缘层厚度对3-D IC散热的影响。正如预期的那样,我们提出的模型与现有模型的结果一致性很好,这表明考虑横向传热和TSV结构的模型可以更有效、更准确地预测温度分布。此外,研究发现锥环TSV具有更优异的散热性能。关键词 : 3-D集成电路,解析热模型,
倒装芯片式集成电路的热管理通常依赖于通过陶瓷封装和高铅焊料栅格阵列引线进入印刷线路板的热传导作为散热的主要途径。这种封装配置的热分析需要准确表征有时几何形状复杂的封装到电路板的接口。鉴于六西格玛柱栅阵列 (CGA) 互连的独特结构,使用详细的有限元子模型从数字上推导出有效热导率,并与传统 CGA 互连进行比较。一旦获得有效热导率值,整个互连层就可以表示为虚拟的长方体层,以纳入更传统的“闭式”热阻计算。这种方法为封装设计师提供了一种快速而可靠的方法来评估初始热设计研究权衡。
电弧增材制造 (WAAM) 是一种允许高效原位生产组件或再制造的工艺,它能够以更高的沉积速率和更低的成本进行生产。然而,WAAM 组件在沉积过程中会受到散热的影响,从而导致粗柱状晶粒生长,造成机械性能较差,限制工业应用。因此,本研究调查了将 Al 2 O 3 陶瓷粉末颗粒孕育剂引入 AWS A5.9 ER308LSi 不锈钢壁结构中的作用,通过细化晶粒工艺来提高机械性能。在沉积过程中,当温度降至 150ᵒC 时,手动将 Al 2 O 3 陶瓷粉末颗粒添加到每一层。为了弥补这些知识空白,我们进行了一系列完整的拉伸测试。制造了 WAAM 壁并分析了样品的微观结构。结果表明,WAAM SS308LSi 部件在沉积方向上的最高抗拉强度为 560 MPa,与未接种样品相比增加了 6%。这种改进是由于晶粒细化和异质成核的成功。该研究证明了该技术在 WAAM 部件制造或再制造过程中改善机械性能和微观结构的潜力。
通过 FLIR 系统识别威胁极其困难。虽然 AH-64 机组人员可以轻松找到车辆的热信号,但可能无法确定敌友。前视红外线可检测物体热量发射的差异。在炎热的天气里,地面反射或发射的热量可能比可疑目标多。在这种情况下,环境会很“热”,而目标会很“冷”。随着夜间空气冷却,目标散热或散热的速度可能低于周围环境。在某些时候,目标和周围环境的热量发射可能相等。这是红外交叉,使目标捕获/检测变得困难甚至不可能。红外交叉最常发生在环境潮湿的时候。这是因为空气中的水在物体的发射率中形成了一个缓冲。所有使用 FLIR 进行目标捕获的系统都存在此限制。低云层可能不允许地狱火导引头有足够的时间锁定目标,或可能导致其在捕获后断开锁定。在远距离,飞行员可能必须考虑云层,以便让导引头有时间将武器转向目标。飞行员夜视传感器无法检测到电线或其他小障碍物。
良好的热系统设计对于确保适当的系统性能,可靠性和寿命至关重要。如图1。不同系统级别的热因子“上面”,PCB设计(层,垫尺寸。)和空气流是影响散热的主要因素。在组件级别上,许多因素都会影响热阻力,例如包装类型,包装材料,芯片尺寸,功率耗散等。”图2。传热的形式。”显示了设备级别的热量耗散路径的示意图。在组件水平上进行传热的主要机制是对流(通常是通过空气流从包装表面到周围环境的热传递)和传导(从模具表面通过粘结线和铅框从模具表面和铅框架传递到PC板)。通过辐射(电磁能传递)进行的传热通常可以忽略不计于闪存设备。在Macronix用于闪存的塑料包中,通常5〜20%的热量消散是通过对流的包装顶部通过包装的顶部,而其余的80〜95%是通过PCB通过传导。”图3。A)。热电阻与层流气流”,图3。B)。热电阻与芯片尺寸”和”图3。C)。热阻力与PCB设计“显示了各种因素对热阻力的影响。图2。传热形式。
摘要 - 随着异质整合的发展,结合多个功能的设备的多样性和密度已显着增加。随后的功率使用情况和组件尺寸减小,特别是中央加工单元(CPU)的尺寸凸显了传统冷却的局限性,并揭示了对热管理的显着改善的必要性。在这项研究中,将提出一种创新的流体热冷却溶液,该溶液将提出CPU包装中高密度和非均匀散热的解决方案。解决方案设计包括喷射撞击,用于同时直接冷却四个电子芯片以及芯片连接的微引脚鳍。使用选择性激光熔化(SLM),铜微销鳍已在硅芯片的表面上加在一起制造,从而消除了对热界面材料(TIMS)的需求。在数值上研究了喷射喷嘴尺寸和喷射到芯片距离对传热和流体流量的影响。提出的解决方案显示出具有较低水平的系统复杂性和较低开销的较低的冷却剂和制造的较低水平的潜力。据作者所知,在单相冷却研究区域中,热电阻结果是报告的最低(0.015 k/w)。
微电子器件的散热是限制其性能和可靠性的关键问题 [1]。固-固界面的巨大热阻往往是散热的主要瓶颈 [2]。因此,了解界面热传输和设计界面以实现超高热导率的需求十分巨大。原子格林函数 (AGF) 一直是研究纳米级热传输的有力工具 [3,4],尤其是跨界面热传输。然而,传统的 AGF [3,5–12] 是在谐波范围内制定的。缺乏非谐性一直是 AGF 在实际温度范围内处理界面热传输的主要限制因素 [13,14]。在 AGF 中加入非谐性在原则上是可能的,但极具挑战性。自 2006 年 Mingo 将非谐性纳入一维原子结以来 [15],很少有人尝试使用不同程度的近似将非谐性纳入三维结构,例如通过拟合实验数据获得非谐性势能或非弹性声子散射率 [16–18]。这些研究表明了非谐性对界面热传输的重要性,并启发了我们在没有任何近似的情况下将非谐性纳入 AGF 的努力。
氮化硅陶瓷底物在活性金属悬挂(AMB)底物中起着关键作用,用于电动模块,其应用包括电动汽车(EV)和混合电动汽车(HEV)电动机控制的逆变器。这些基材在功率半导体模块操作过程中具有散热的函数。同时,底物越细,其热扩散率越高,功率半导体模块的操作效率越大。增加的电动汽车和HEV的采用量正在推动针对高功率设计的功率半导体模块的更多使用,从而最终导致对较薄的底物的需求不断增长,这些底物具有很大的热耗散性能。然而,缺乏评估比0.5毫米的底物热扩散性的确定方法,这在确保测量结果的一致性方面引起了挑战。这项联合研究邀请AIST及其对评估方法的广泛了解以及NGK及其先进的陶瓷底物技术,以收集数据以量化初步过程,这会影响底物热扩散率的测量。这将使我们能够验证评估高性能薄底物的方法,这些底物甚至比0.5毫米薄,例如尚未根据现有日本工业标准(JIS)定义的方法,从而有助于高度准确的测量数据和评估方法的未来标准化。
第一部分 引言 3-1. 目的 a. 本章提供预防和治疗冷热应激伤害的指导。本章中包含的信息描述了评估冷热环境条件对岸上、海上和地面部队的影响所必需的物理和生理测量。本文件的目标读者是预防医学和护理可能受到冷热影响的人员的提供者。 b. 海军和海军陆战队健康保护司令部 (NAVMCFORHLTH- PRTCMD) 技术手册 NEHC-TM-OEM 6260.6A《热和冷应激伤害的预防和治疗》包含有关该主题的更详细信息。 3-2. 热应力和应变 a. 热应力是影响身体吸热或散热的多种因素的组合(环境、生理和衣物)。图 3-1 显示了身体如何向周围环境吸热或散热。环境生理学家使用术语“压力”来表示作用于生物系统的力或负荷,使用术语“应变”来表示由此导致的生物系统扭曲。热应力因素包括热、冷、湿度、辐射、空气流动和表面温度。热应变表现为特定的心血管、体温调节、呼吸、肾脏和内分泌反应。3-3. 角色和职责 a. 海上部队:遵循 OPNAVINST 5100.19F 中规定的指导。b. 岸上部队:遵守 OPNAVINST 5100.23H 和职业安全与健康管理局规定(如适用)。根据 MARADMIN 111/15,军官、参谋士官、士官和其他主管应确保海军陆战队、水手和文职人员熟悉热和冷应力伤害预防。