ACO 行政同意令(2023 年) AOC 行政同意令(2015 年) AST 地上储罐 ASTM 美国材料与试验协会 AVGAS 航空汽油 CNRH 夏威夷海军区司令 COPC 潜在关注污染物 CSM 概念场地模型 DLA 国防后勤局 DO 柴油 DOD 国防部 DOH 夏威夷卫生部 DON 海军部 EAL 环境行动水平 EPA 美国环境保护署 EPP 环境保护计划 EXWC 工程与远征作战中心 FLC 舰队后勤中心 FOR 燃油回收 FRP 设施响应计划 F-24 F-24 喷气燃料 F-76 船用柴油 HAR 夏威夷行政法规 HASP 健康与安全计划 HEER 危害评估与应急响应 IDW 调查衍生废物 JBPHH 珍珠港-希卡姆联合基地 JP-5 喷气燃料推进剂 5 号 JP-8 喷气燃料推进剂 8 号 JTF-RH 联合特遣部队-红色Hill LNAPL 轻质非水相液体 MOGAS 车用汽油 NAVFAC 海军设施工程系统司令部 NAVSUP 海军补给系统司令部 NSFO 海军特种燃料油 QA 质量保证 QC 质量控制 QCP 质量控制计划 RFI 信息请求 RHBFSF Red Hill 散装燃料储存设施 SECNAV 海军部长 SOP 标准作业程序
探索新的掺杂材料对于提高半导体的性能,效率和多功能性至关重要。perovskites具有多种结构和可调性,已成为下一代半导体的有前途的候选人。机器学习潜力(MLP)在有效预测散装材料的材料特性方面表现出了巨大的希望。然而,缺乏用于钙壶的全面掺杂数据集阻碍了数据驱动技术在该域中进行高通量筛选和材料发现的应用。在这项工作中,我们提出了一个掺杂数据集“ perovs-opant”,其中包含来自438个不同掺杂的钙钛矿材料宽松轨迹的20,000多个密度功能理论(DFT)数据点。使用perovs-opants,我们评估了在散装材料轨迹上预先介绍的基础模型MACE-MP,以标记最先进的MLP的性能。我们的结果表明,尽管MACE-MP在散装晶体上表现出色,但Perovs-opants代表了分布的挑战,并具有重大的预测错误。我们通过对MACE-MP进行填充以实现佩洛斯型和原始散装晶体的比较建模来赎回这些效果。
目录 第 1 章 简介,第 1 页 1-1。目的 1-2。参考文献 1-3。缩写和术语解释 第 2 章 职责,第 1 页 2-1。驻韩美军分区石油办公室 (SAPO) 2-2。驻韩美军服务组件燃料办公室 2-3。国防后勤局 (DLA) 能源韩国地区办事处 第 3 章 支持散装石油作业的计划和流程,第 7 页 3-1。韩国资助建设 (ROKFC) 3-2。军事建设 (MILCON)/指定小型建设 (SMC) 3-3。维持、恢复和现代化 (SRM)/未指定的小型建设 (UMC) 3-4。综合优先级列表 (IPL) 提交 3-5。物流成本分摊 (LCS) 3-6。战时东道国支持 (WHNS) 3-7。战时调动计划 (WMP) 第 4 章报告要求和年度战斗节奏,第 12 页 4-1。韩国联合石油工作组 (JPWG-K) 4-2。散装石油应急报告 (REPOL) 4-3。散装石油能力报告 (POLCAP) 4-4。国防准备报告系统 (DRRS) 附录,第 13 页 A. 参考文献 B.散装石油规划和 BPWRR 时间表 C. 联合和联合(CFC 和 USFK)训练活动 D. 散装石油提交截止日期 表格列表 2-1。驻韩美军服务组件燃料办公室,第 3 页 图表列表 3-1。韩国资助的建设时间表,第 8 页 3-2。驻韩美军 IPL 时间表,第 10 页 B-1。库存配置,第 15 页 词汇表,第 19 页
生产现场的散装液氧、液氮和液氩储存系统 作为行业标准协调计划的一部分,欧洲工业气体协会 (EIGA) 发布了 EIGA Doc 127《生产现场的散装液氧、液氮和液氩储存系统》。本出版物由国际协调委员会成员联合出版。本出版物旨在作为国际协调出版物,供国际协调委员会所有成员在世界范围内使用和应用,该委员会成员包括亚洲工业气体协会 (AIGA)、压缩气体协会 (CGA)、欧洲工业气体协会 (EIGA) 和日本工业和医用气体协会 (JIMGA)。地区版具有与 EIGA 版相同的技术内容,但是,主要在格式、使用的单位和拼写方面有所编辑变化。地区监管要求适用于欧洲。
液体 - 固体增益混合物或双相增益(BGAIN)可以达到糊状的一致性,而不会失去液体金属的电性能。尽管在可加工性方面取得了进展,但尚未完全了解Egain和Bgain的电源。研究人员报道了egain的耐药性结果的相对变化(图1A)和液态金属的复合材料[32,33](包括双相材料和液态金属包含的弹性体或LMEES,或LMEES,如图1B所示)。尽管有些样本似乎遵循批量导体假设(Pouillet定律),但许多研究表明,低于模型预测的值的电阻。由于液态金属研究中使用的广泛测量技术,通常不清楚是由于内在电导率的变化而造成的差异,而不是由实验设置引起的未校正误差。为了说明测量技术的重要性,请考虑经典的两端测量系统的情况。这些测量值通常是要执行的EAS,但引入了重大的测量误差。[34]在此设置中,Sci-Intist或工程师将使用两条线将万用表连接到样品的两端(图2 A,B)。万用表报告的阻力必然包括感兴趣材料(例如,bgain等)的阻力。),除了包括铅线,铅线和样品电极之间的接触电阻以及任何组件(例如铜末端,导电环氧,氧化物,氧化物,[35]等)的抗性外,还包括)。)。在电线和感兴趣的材料之间。对于较高的电阻导体(例如传感器中的石墨 - 硅胶导电材料,通常在几个KΩ[36]范围内)寄生抗性可忽略不计。相比之下,如果样品电阻为1Ω,与0.1Ω的组合寄生抗性(对于LM电路常见),则寄生抗性表示固定的10%死亡重量误差。假设可以为可拉伸电子设备获得可靠的测量值,那么标记液体金属电源机电行为的正确模型是什么?图1显示了文献中报道的重要行为范围,但是许多作者认为批量构件假设(Pouillet定律[4,27,37])是适当的基准。通常,液态金属样品包含在弹性材料中,这些材料根据材料的泊松比减少其横截面区域。
1.1 适用范围。1.1.1 散装运输液化气体船舶入级与建造规范 1 适用于专门建造或改装的船舶,无论其总吨位和动力装置输出功率如何,用于运输散装液化气体(在 37.8°C 温度下蒸气压超过 280 kPa 绝对值)以及技术要求表(附录 1)中列出的其他物质。散装运输液化气体的船舶 2 完全符合《海船设备规范》、《海船货物装卸设备规范》和《海船载重线规范》的要求。《海船入级与建造规范》 3 在《海船规范》文本规定的范围内适用于液化气体运输船。1.2 定义和解释。1.2.1 液化气体规范中使用以下定义。可燃上限是指空气中烃类气体的浓度,高于该浓度时,空气不足以支持和传播燃烧。二级屏障是货物围护系统的防液体外部元件,旨在暂时围护任何可能通过主屏障泄漏的液体货物,并防止船舶结构温度降低到不安全的水平。 液化石油气运输船是设计用于运输技术要求表(附录 1)所列的液化气体和其他散装产品的船舶 ...或其他散装产品的船舶。货物围护系统和货物管道;使用不需要二次屏障的货物围护系统运载货物的货舱处所;用单一气密钢边界与布置需要二次屏障的货物围护系统的货舱处所隔开的处所;货泵房和货物压缩机房;距离任何货舱出口、气体或蒸汽出口、货管法兰或货物阀门或货泵房和货物压缩机房的入口和通风口 3 米范围内的露天甲板或露天甲板上的半封闭处所;货物区域上方的露天甲板,以及露天甲板上货物区域前后 3 米范围内至露天甲板以上 2.4 米高度的区域;货物围护系统外表面 4m 以内,且该表面暴露在天气中;装有产品管道的封闭或半封闭处所。(装有第 VIII 部分“仪器和自动化系统”6.3 规定的气体探测设备的处所和使用蒸发气体作为燃料并符合第 VI 部分“系统和管道”要求的处所不视为气体危险处所);
1.1 适用范围。 1.1.1 《散装运输液化气体船舶入级与建造规范》1 适用于专门建造或改建的船舶,无论其总吨位和动力装置输出功率如何,用于运输散装液化气体(在 37.8°C 温度下蒸气压超过 280 kPa 绝对值)以及技术要求表(附录 1)所列的其他物质。散装运输液化气体的船舶 2 完全符合《海船设备规范》、《海船货物装卸设备规范》和《海船载重线规范》的要求。《海船入级与建造规范》3 在《海船规范》文本规定的范围内适用于 LG 承运人。 1.2 定义和解释。 1.2.1 LG 规范中使用了以下定义。可燃上限是指空气中碳氢化合物气体的浓度,高于该浓度时,没有足够的空气支持和传播燃烧。二级屏障是货物围护系统的防液体外部元件,旨在暂时遏制任何可能通过主屏障泄漏的液体货物,并防止船舶结构温度降低到不安全的水平。气体安全处所是除气体危险处所以外的处所。液化气体运输船是设计用于运载液化气体的船舶。
在这项工作中,我们建立了有限的两维光子结构的批量边缘对应原理。特别是,我们专注于具有周期性系数的发散形式运算符,并证明了众所周知的Gap Chern Number(散装不变性)和通过痕量公式定义的,用于将操作员限制在具有Dirichlet边界条件的限制域的轨迹公式。我们证明了边缘指数表征电磁沿系统边界的循环,而BEC原理是能量保护的结果。证明利用绿色功能技术,这些技术放松了基础结构上的平滑性要求,并且可以扩展到其他系统。这些结果为使用有限的几何形状设计可靠的拓扑光子设备提供了严格的理论基础,从而补充了离散模型的最新进步。
《水法》第 13383(a) 条规定,“州委员会或地区委员会可针对向通航水域排放或计划排放的任何人、向公有处理厂引入污染物的任何人、拥有或运营或计划拥有或运营公有处理厂或其他处理生活污水的处理厂的任何人、使用或处置或计划使用或处置污水污泥的任何人建立监测、检查、进入、报告和记录保存要求。”第 13383(b) 条继续规定,“州委员会或地区委员会可要求任何受本条约束的人员建立和维护监测设备或方法,包括在适当情况下采用生物监测方法,按规定采集污水样本,并提供合理要求的其他信息。”
摘要我们报告了由单晶立方ktao 3中的位错介导的室温散装可塑性,与传统的知识形成了鲜明的了解,即单晶ktao 3容易受到脆性裂解的影响。使用环状Brinell凹痕,划痕和单轴体积压缩的基于力学的组合实验方法始终显示从Mesoscale到宏观尺度的KTAO 3中的室温脱位。这种方法还提供可调的脱位密度和塑性区域尺寸。扫描传输电子显微镜分析基于激活的滑移系统为<110> {1-10}。鉴于KTAO 3作为新兴的电子氧化物的意义越来越重要,并且对调谐氧化物物理特性的脱位的兴趣越来越大,我们的发现有望引发与脱位的KTAO 3的协同研究兴趣。