abtract本文在工业测试台上介绍了两项无线测量活动:工业车辆到车辆(IV2V)和工业车辆到工业 - 弗拉图和传感器(IV2I+),并提供有关两个捕获的数据集的详细信息。IV2V涵盖了移动机器人和固定机器人之间的侧链链路通信方案,而IV2i+是在自主清洁机器人连接到私人蜂窝网络的工业环境中进行的。在综合测量方法中,不同的通信技术的组合提供了洞察力,可以通过ML来利用这些洞察力,例如鳍片,视线识别,视线检测,服务质量的预测或链接选择。此外,数据集可公开可用,标记和预先贴上,以快速登机和适用性。
摘要 — 注意力缺陷多动障碍 (ADHD) 是儿童中最常见的神经发育障碍。它以多种方式影响患者的生活:注意力不集中、刺激抑制困难或运动功能调节困难。目前存在不同的治疗方法,但这些治疗方法可能会产生副作用或并非对所有亚组都有效。神经反馈 (NF) 是一种创新治疗方法,包括大脑活动显示。NF 训练可以包括虚拟现实 (VR) 视频游戏,其中参与者的注意力会影响游戏。注意力通过生理信号进行评估,主要步骤之一是设计注意力状态的估计器。我们提出了一个新颖的框架,能够记录特定注意力状态下的生理信号并能够估计相应的注意力状态。我们提出了一个由脑电图信号 (EEG) 和一个眼动仪组成的数据库,该眼动仪标有代表 32 名健康参与者注意力持续时间的分数。从信号中提取不同的特征并提出机器学习 (ML) 算法。我们的方法在注意力估计方面表现出很高的准确性,这证实了注意力状态与生理信号(即 EEG、眼动追踪信号)之间的相关性。该数据集已公开,以促进该领域的研究,我们鼓励其他科学家使用自己的方法进行注意力估计。
目前,全球太阳能发电量为 485 千兆瓦,该行业每年的增长率为 29%。除了制造、运输和安装可能造成的故障外,这些太阳能资产在其整个使用寿命期间还会受到环境因素的影响而退化,需要进行检查以确保电力生产符合预期的财务模型。随着太阳能行业规模的扩大,检查越来越依赖于遥感。检查太阳能模块的热像通常需要训练有素的专家来识别异常。然而,这些数据并不广泛提供给有办法自动应对这些数据挑战的机器学习研究人员。本文介绍了一个新的数据集 InfraredSolarModules,其中包含不同类型的缺陷、故障和发现,可用作自动异常分类的基础。1
创建带有人工注释的大型语料库在时间和资源上都是一个艰巨的过程。研究团队通常采用远程监督或无监督方法从文本数据中提取训练示例。在机器阅读理解 (MRC)(Hermann 等人,2015 年)中,可以通过获取多句未标记的段落以及另一小段文本(也未标记,通常是下一句)来自动构建训练实例。然后用占位符替换小段文本的命名实体。在这种情况下,MRC 系统经过训练(并评估其能力)阅读段落和小段文本,并猜测被占位符替换的命名实体,该命名实体通常是段落的命名实体之一。这种问答 (QA) 也称为完形填空题(Taylor,1953 年)。有几个数据集
目的 本研究旨在通过整合来自多个来源(包括 LitVar 数据库、PubMed 和 GWAS 目录)的数据,创建与营养相关的人类遗传多态性的综合数据集。这一整合资源旨在通过提供可靠的基础来探索与营养相关性状相关的遗传多态性,从而促进营养遗传学研究。 方法 我们开发了一个数据集成流程来组装和分析数据集。该流程从 LitVar 和 PubMed 中检索数据,合并数据以构建统一的数据集,定义综合 MeSH 查询以检索相关的遗传关联,并将结果与 GWAS 数据交叉引用。 结果 生成的数据集汇总了有关遗传多态性和营养相关性状的大量信息。通过 MeSH 查询,我们确定了与营养相关性状相关的关键基因和 SNP。与 GWAS 数据的交叉引用提供了与这种遗传多态性相关的潜在影响或风险等位基因的见解。共现分析揭示了有意义的基因-饮食相互作用,推动了个性化营养和营养基因组学研究。结论本研究提供的数据集整合并组织了与营养相关的遗传多态性信息,有助于详细探索基因-饮食相互作用。该资源推动了个性化营养干预和营养基因组学研究。该数据集可在 https://zenodo.org/records/ 14052302 上公开访问,其适应性结构确保了其在广泛的遗传学研究中的适用性。
人工智能 (AI) 在行为健康领域的应用引起了人们对使用机器学习 (ML) 技术识别人们个人数据模式的兴趣,目的是检测甚至预测抑郁症、躁郁症和精神分裂症等疾病。本文通过对三个自然语言处理 (NLP) 训练数据集的情境分析,研究了人工智能介导的行为健康背后的数据科学实践和设计叙述。通过将数据集视为与特定社会世界、话语和基础设施安排密不可分的社会技术系统,我们发现数据集构建和基准测试的技术项目(行为健康领域人工智能研究的当前重点)与行为健康的社会复杂性之间存在一些不一致。我们的研究通过阐明无序数据集的敏感概念,为日益增长的人工智能系统关键 CSCW 文献做出了贡献,该概念旨在有效地扰乱行为健康领域中人工智能/机器学习应用的主导逻辑,并支持研究人员和设计师反思他们在这个新兴且敏感的设计领域中的角色和责任。
简介 诊断成像数据集 (DID) 是一个月度数据收集,涵盖了英格兰 NHS 患者的诊断成像测试数据。它包括全科医生直接使用癌症关键诊断测试的估计值,例如胸部成像、非产科超声和脑部 MRI。引入 DID 是为了监测“改善结果:癌症战略 1 ”的进展情况。该战略阐述了政府、NHS 和公众如何帮助预防癌症、提高癌症服务的质量和效率,并朝着实现与最佳结果相媲美的方向迈进。其中一个方面是确保全科医生能够获得正确的诊断测试,以帮助他们更早地诊断或排除癌症。因此,DID 报告了成像活动、转诊来源和及时性。这些数据是从放射信息系统 (RIS) 中整理出来的,放射信息系统是用于管理放射科工作流程的医院管理系统,并上传到 NHS Digital 维护的数据库中。 1.1 常用首字母缩略词
Jhunjhunu,印度拉贾斯坦邦,摘要本文讨论了用于椰子植物监测的自动化疾病检测系统的发展,重点是多个机器学习技术的整合,实时检测能力,可伸缩性和适应性学习。深度学习模型,尤其是卷积神经网络(CNN),可以自主获得与疾病症状相关的图像特性。选择适当的体系结构,例如Resnet,VGG-16或EfficityNet,促进了数据中复杂模式的捕获。该研究研究了使用高分辨率图像与深度学习方法结合使用的高分辨率图像来识别和评估椰子树健康的可行性。Resnet-50模型在检测和健康分类任务中的表现优于VGG-16体系结构,表明大多数受影响的椰子树具有Ganoderma感染和钾不足。提出的方法显示了泰国椰子树管理的潜力,从而可以更有效地使用工人,而在现场花费的时间更少。为了最大程度地提高模型性能,未来的研究应旨在增加数据集的数量和多样性,包括各种视觉属性。为了更好地对健康问题进行分类,未来的研究可能会使用多光谱摄像头。通过将监督,无监督和半监督的学习方法结合起来,可以根据椰子植物监测和更广泛的应用来量身定制该系统。关键字:椰子叶,Resnet,VGG-16和CNN。
摘要:发现网络安全威胁变得越来越复杂,即使不是不可能!可以利用人工智能(AI)的最新进展来智能发现网络安全威胁。AI和机器学习(ML)模型取决于相关数据的可用性。基于ML的网络安全解决方案应在现实世界攻击数据上进行培训和测试,以便解决方案产生可信赖的结果。问题是,大多数组织无法访问可用,相关且可靠的现实世界数据。当训练用于发现新型攻击的ML模型(例如零日攻击)时,此问题会加剧。此外,网络安全数据集的可用性受到隐私法律和法规的负面影响。本文提出的解决方案是一种方法论方法,可指导组织开发网络安全ML解决方案,称为Cysecml。cysecml提供了获得或生成合成数据,检查数据质量以及识别优化ML模型的功能的指导。使用网络入侵检测系统(NIDS)来说明网络安全和AI概念的收敛性。
During the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX), which coincided with Taiwan's Southwesterly Monsoon Experiment—2008 (SoWMEX-08), the upper-air sounding network over the Taiwan region was enhanced by increasing the radiosonde (‘‘sonde'') frequency at its operational sites and by adding several additional sites (three that were land based and two that were ship基于)和飞机Dropsondes。在Timrex的特殊观察期(2008年5月15日至6月25日)中,2330辐射观测成功地从增强的网络中获取。处理来自13个Upsonde站点的数据的挑战的一部分是,使用了四种不同的SONDE类型(Vaisala RS80,Vaisala RS92,Meisei和Graw)。对SONDE数据的后期分析表明,在许多SONDES中,尤其是在Vaisala rs80 rs80 sondes的数据中存在显着的干偏见,这些数据在四个地点使用。此外,船舶结构对SONDE数据的污染导致在关键海洋部位的低质量低级热力学数据。本文研究了用于质量控制SONDE数据的方法,并在可能的情况下纠正它们。特别注意校正湿度场及其对各种对流措施的影响。对校正后的SONDE湿度数据与独立估计的比较表明良好的一致性,表明校正有效地消除了许多SONDE湿度错误。检查对流的各种措施表明,使用湿度校正的SONDES对TIMREX期间对流的特征有很大不同的观点。例如,在RS80站点,使用校正的湿度数据的使用增加了平均斗篷; 500 j kg 2 1,平均对流率(CIN)降低80 j kg 2 1,并使中级对流质量流量增加了70%以上。最终,这些校正将为诊断分析和建模研究提供更准确的水分领域。