本文讨论了基于无人机 (UAV) 的海上态势感知支持集成系统的开发,强调了自动检测子系统的作用。SEAGULL 项目的主要研究课题之一是通过无人机上的传感器自动检测海上船舶,以帮助人类操作员生成海上事件的态势感知,例如 (a) 检测和地理参考石油泄漏或有害和有毒物质,(b) 跟踪系统(例如,船舶、沉船、救生艇、碎片),(c) 识别行为模式(例如,船舶会合、高速船、非典型航行模式),以及 (d) 监测环境参数和指标。我们描述了一个由光学传感器、嵌入式计算机、通信系统和船舶检测算法组成的系统,该系统可以在嵌入式无人机硬件中实时运行,并为人类操作员提供低延迟、高精度(约 99%)和适当召回率(>50%)的船舶检测,这与其他计算密集型的先进方法相当。介绍和讨论了现场测试结果,包括在红绿蓝 (RGB) 和热图像中检测救生员和多艘船只。关键词:无人机、计算机视觉、船舶检测、跟踪、识别
执行摘要 • 陆军于 2012 年 7 月 30 日至 8 月 17 日在加利福尼亚州爱德华兹空军基地和加利福尼亚州欧文堡国家训练中心 (NTC) 进行了灰鹰 IOT&E。• 陆军根据 DOT&E 批准的测试和评估总体规划和测试计划进行了 IOT&E。• DOT&E 正在完成超低速率初始生产 (BLRIP) 报告,支持计划于 2013 年 4 月进行的灰鹰全速率生产决定。在该报告中,DOT&E 得出结论,配备灰鹰的部队能够有效操作 MQ-1C 系统,并有可能为作战部队提供有效的支持,但陆军需要继续开发战术、技术和程序;培训;以及将这种能力有效整合到作战行动中所需的理论。灰鹰系统在操作上是合适的。灰鹰通过为公司移动期间运输地面控制站的车辆驾驶室提供装甲能力来满足其机组人员保护生存能力要求。灰鹰飞机在中高威胁环境中无法生存。
认知工作建模可以支持对稳健性和弹性的评估。UTM 等复杂工作领域的工作由工作环境中的约束和动态驱动,这些约束和动态可以识别和编码(Vicente,1999 年)。一旦编码,就可以模拟模型来评估此类工作的动态(Pritchett、Bhattacharyya 和 IJtsma,2016 年;Pritchett、Feigh、Kim 和 Kannan,2014 年)。我们认为,对于评估未来 UTM 运营中的弹性,知识获取和建模可以成为形成性和迭代周期的一部分,在该周期中,对系统特性和响应的探索支持对设计要求的识别,类似于 Vicente(1999 年)和 Woods & Roth(1994 年)。在本文中,我们结合认知演练和边缘案例场景的计算建模和模拟,对 UTM 系统的稳健性和弹性进行基于模型的探索。
摘要:无人驾驶航空系统(通常称为无人机)的使用如今正在迅速增长。可以从使用无人机机队和相关的人机界面中受益的应用程序正在涌现,以确保更好的性能和可靠性。特别是,无人机机队可以成为监控广阔区域并将相关信息传输到地面控制站的宝贵工具。我们为地面控制站提供了一种人机界面,用于在协作环境中由多个操作员组成的团队远程操作无人机机队。在这种协作环境中,界面设计的主要挑战是最大限度地提高团队态势感知能力,将重点从单个操作员转移到整个团队决策者。我们特别感兴趣的是测试以下假设:共享显示器可能会提高团队态势感知能力,从而提高整体性能。我们提出的实验研究表明,共享和非共享显示器之间的性能没有差异。然而,在发生意外事件的试验中,使用共享显示器的团队保持了良好的表现,而使用非共享显示器的团队表现下降。特别是在发生意外情况时,操作员能够安全地将更多无人机带回家,保持更高水平的团队态势感知。
13.摘要(最多 200 个字)本报告评估了未来在国家空域系统 (NAS) 内开发和部署 UAS 所带来的机遇、风险和挑战,这些机遇、风险和挑战会影响 2015 年至 2035 年的 UAS 预测增长。对四个关键领域进行了分析:技术、任务需求、经济性以及 NAS 操作中常规使用的现有或预期挑战。评估了新兴技术的预测效果以及机身、动力装置、传感器、通信、指挥和控制系统以及信息技术和处理等领域的新技术创新。预期的任务需求包括情报、监视和侦察 (ISR),以及诸如物资交付、货物运输、搜索和救援以及飞行员增强等新领域;为每个领域开发了示例业务案例模型。在 NAS 中常规使用 UAS 面临的挑战包括:缺乏在综合空域内安全飞行的立法和法规;飞行员培训和认证;监管、政策和程序问题;社会问题,如隐私和滋扰问题;环境问题,如噪音和排放;以及安全。假设这些挑战在很大程度上得到缓解,以下是 2035 年按用户划分的 UAS 机队规模预测:国防部约 14,000 架,另外约 5,000 架可选配飞行员增强(空军约 3,500 架;海军 + 海军陆战队约 2,500 架;陆军约 10,000 架);公共机构(联邦、州和地方)约 70,000 架。到 2035 年,UAS 车辆总数将接近约 250,000 架,其中约 175,000 架将进入商业市场。到 2035 年,UAS 的运行预计将超过载人飞机的运行,无论是在军事领域还是在商业领域。
更加广泛。UAS 不受载人飞机所受的许多操作限制,有可能通过多种方式增强空中响应,包括支持态势感知,从而加速灾害管理工作。可扩展交通管理应急响应行动 (STEReO) 活动的目的是建立一个生态系统,使小型 UAS (sUAS) 能够在灾害管理事件期间在空域安全飞行。实现这一目标的第一步是开发一个小型的单用户工具 (UASP-kit),以增强 sUAS 飞行员对空域的态势感知。美国森林服务局的主题专家在多日的演练中收集了用户对该工具的功能和特性的需求。随后,UASP-kit 的原型被带到了多个能够与其交互的用户面前进行扩展演示。用户反馈大多是积极的,用户讨论了他们需要的信息以支持情境感知。演示还强调了使用起来不直观的功能,以及需要修改的功能,以使套件更加用户友好和强大。
AMC1 UAS.LUC.030(2) 安全管理系统.............................................................. 340 GM1 UAS.LUC.030(2)(a) 安全管理系统.............................................................. 341 AMC1 UAS.LUC.030(2)(c) 安全管理系统.............................................................. 341 GM1 UAS.LUC.030(2)(c) 安全管理系统.............................................................. 342 GM1 UAS.LUC.030(2)(d) 安全管理系统.............................................................. 342 GM2 UAS.LUC.030(2)(d) 安全管理系统.............................................................. 343 GM3 UAS.LUC.030(2)(d) 安全管理系统.............................................................. 343 AMC1 UAS.LUC.030(2)(g) 安全管理系统.............................................................. 343 GM1 UAS.LUC.030(2)(g)(i) 安全管理系统........................................... 344 AMC1 UAS.LUC.030(2)(g)(iii) 安全管理系统 .............................................. 344 GM1 UAS.LUC.030(2)(g)(iv) 安全管理系统 .............................................. 344 AMC1 UAS.LUC.030(2)(g)(v) 安全管理系统 .............................................. 345 GM1 UAS.LUC.030(2)(g)(v) 安全管理系统 .............................................. 346 AMC1 UAS.LUC.030(2)(g)(vi) 安全管理系统 .............................................. 346 GM1 UAS.LUC.030(2)(g)(vi) 安全管理系统 .............................................. 347 GM1 UAS.LUC.030(2)(g)(vii) 安全管理系统 .............................................. 347 GM1 UAS.LUC.030(2)(g)(viii) 安全管理系统 .............................................. 348 AMC1 UAS.LUC.030(2)(g)(ix) 安全管理系统 ...................................................... 349
1978 年,决定出版更多专业专著,涵盖原始飞行测试手册第 1 卷和第 2 卷的各个方面,包括飞机系统的飞行测试。1981 年 3 月,飞行测试技术组 (FTTG) 成立,以执行这项任务并继续编写飞行测试仪表系列卷。这个新系列的专著(AG237 除外,该系列单独编号)将作为单独编号的卷在 AGARDograph 300 中出版。1993 年,飞行测试技术组改组为飞行测试编辑委员会 (FTEC),从而更好地反映了其在 AGARD 中的实际地位。幸运的是,卷的编写工作可以继续进行,而不会受到这一变化的影响。
UAS 包括 MQ-9 RPA 和地面控制站 (GCS)。 - MQ-9 RPA 是一种遥控武装飞行器,使用光学、红外和雷达传感器来定位、识别、瞄准和攻击地面目标。 RPA 是一种中型飞机,飞行高度可达 50,000 英尺,内部传感器有效载荷为 800 磅,外部有效载荷为 3,000 磅,续航时间约为 14 小时。 GCS 提供飞机的发射/回收以及传感器和武器的任务控制。 C 波段视距数据链用于 RPA 发射和恢复操作,Ku 波段卫星链路用于 RPA 任务控制。
有限许可:本材料可在未经 ANSI 许可的情况下复制,但仅限于非商业和非促销目的,并且文本不得以任何方式更改或删除,且 ANSI 版权已明确注明如上所述。未经出版商事先书面许可,不得以任何形式或任何方式复制或分发本出版物的任何部分,或将其存储在数据库或检索系统中,除非获得有限许可或美国版权法第 107 或 108 条的许可。