我要感谢我的考官 Jens Lehmann 教授和 Alfons Schuster 博士的指导和支持。我还要感谢我的所有导师 Hajira Jabeen 博士、Dorothea Nieberl 和 Monika Mayer,感谢他们在整个论文工作期间给予我的巨大鼓励和陪伴。Doro 和 Monika 都通过宝贵的会议帮助我解答疑问,并在我最需要的时候给出最好的建议。谢谢。尽管这是一项远程研究工作,但在这几个月里,Hajira 一直与我保持互动,提供宝贵的建议并支持我所有的想法。谢谢。最后但并非最不重要的一点,我要感谢我的家人的陪伴。特别感谢 Charles Lennart M¨uller 在所有空闲时间都陪伴在我身边。我还要感谢 Premium Aerotec AG 允许我将 NDT 数据用于本研究。
TWI 成立于 1993 年,设计并生产使用红外 (IR) 摄像机、专用软件和硬件测量材料中热流并生成部件地下图像的检测系统。1998 年,TWI 获得了 NAVAIR 第二阶段小型企业创新研究 (SBIR) 合同,以开发用于复合材料的手持式红外无损检测 (NDI) 系统。该项目催生了 ThermoScope®,这是一种便携式系统,旨在将热成像技术从实验室环境转移到检测现场。ThermoScope 弥补了超声波(一种速度太慢而无法有效检测大面积区域的点检测方法)和标准热成像技术(能够检测较大区域但属于定性、需要解释且对某些缺陷类型不敏感)之间的差距。如今,ThermoScope 广泛应用于从复合体育用品到军用头盔、直升机旋翼叶片和航天器等各个行业的 NDI 应用。
尽管莱特兄弟驾驶的第一架飞机所采用的就是天然复合材料(即木材),但复合材料作为飞机主结构和次结构的主要贡献却是在 1964 年发现碳纤维之后 1 。当时的目标是开发一种轻质、坚硬且强度高的新型飞机结构材料。碳纤维增强聚合物 (CFRP) 是一种将碳纤维嵌入聚合物制成的复合材料,目前广泛用于民用和军用飞机的主结构和次结构 2,3 。复合材料 2 并不局限于固定翼飞机,还经常用于其他航空航天应用,如直升机的旋翼叶片。由于复合材料比轻质金属合金具有更优异的机械性能 4 ,并且具有减轻重量的潜力 5 ,因此越来越受欢迎。然而,复合材料相对于金属合金的最大优势在于,它们可以定制成具有各向异性的特性,因此可以根据需要制造出强度和刚度的结构,从而减轻结构重量,提高空气动力学效率,最终提高燃油效率 3,5 。后者至关重要,因为 2009 年,国际民用航空组织 (ICAO) 宣布了二氧化碳排放上限,以实现碳中和增长,到 2050 年,航空二氧化碳排放量将比 2005 年的水平减少 50% 6 。
分层 1. 分层主要是由于冲击损伤或制造不良引起的 [3, 23-25]。 2. CFRP 复合材料层合板的抗分层性较低 [26]。 3. 分层会降低复合材料的抗压强度,因为分层很容易使板层发生平面外位移 [27]。 这可能直接导致由于弯曲或锥形几何形状而导致的全厚度失效,或由于裂纹、层片脱落或自由边缘而导致的不连续性 [23]。 4. 分层可能导致横向基体裂纹连接并产生断裂面,从而导致结构失效,在纤维不断裂的情况下卸下载荷 [23]。 它还可能导致 CFRP 层合板的刚度和强度显著降低,并降低 CFRP 的结构可靠性 [10]。
渗透检测 (PT) 和超声波检测 (UT)。然而,将这两种方法应用于整批医疗器械是一项挑战 [9]。在 PT 中,渗透剂被涂在样品表面,渗透剂被表面缺陷吸收。去除渗透剂后,使用显像剂来指示表面缺陷的存在。显像剂将暴露不连续性以供目视检查 [10]。该方法广泛用于检查生物医学领域使用的光滑材料,如金属、玻璃、塑料和陶瓷 [11-13]。然而,无论植入物的几何形状如何,PT 只能显示暴露在样品表面的缺陷。此外,该方法使用许多物质,例如渗透剂和显像剂以及手套和清洁剂等不同配件,并且由于评估是在成品部件上进行的,因此需要仔细控制和记录这些材料。超声波检测虽然已成功应用于许多行业,但它取决于样品的几何形状,并且主要用于医疗器械制造的初步阶段,用于形状较简单的原材料(例如条、块或板)[9]。
无损检测性能要求的演变是由质量要求的发展决定的。因此,这些技术的发展历史 [1] 以检查目标的演变为标志:20 世纪 60 年代的“零缺陷”目标在 20 世纪 70 年代被检测“关键缺陷”的目标所取代,随后在 20 世纪 70 年代至 80 年代又被提高缺陷可检测性的目标所取代。应该指出的是,无损检测 (NDE) 一词就是为这种缺陷表征的演变而发展起来的。20 世纪 80 年代至 90 年代,目标是对易老化的系统和结构进行持续和改进的无损检测。20 世纪 90 年代至 21 世纪,出现了对大面积检查的需求,需要通过结构健康监测 (SHM) 持续监测某些结构的健康状况,同时降低检查和其他评估的成本。
跨行业试验和经验已证实,无损检测的可靠性会受到人为因素的显著影响。已评估人为因素对检测影响的重大试验包括 HSE PANI 项目、核工业中的 PISC III、美国老龄化飞机计划和 NIL POD 试验。一个常见的误解是可靠性差的根源在于检查员;这忽略了影响可靠性的许多其他因素,例如环境、组织、团队和程序。本文概述了 2016 年在 HOIS 海上检查 JIP(www.hois.co.uk)内启动的海上检查人为因素新项目的成果,旨在提高人们对人为因素对海上和陆上石油和天然气行业检查的有效性和可靠性的影响的认识。第一阶段的工作研究了一般问题、从过去的试验中吸取的教训、海上经验以及与海上检查工作范围的各个阶段相关的人为因素。确定的关键因素包括运营商和检查人员的能力、运营商和检查团队之间的良好沟通、对被检查的当地区域和损坏历史的了解、合格的海上检查工程师 (OIE) 的重要性、良好的通道和脚手架、实际或感知的时间压力以及检查员在现场检查方面的经验。当前阶段正在制定专门的
摘要 复合材料在飞机制造中的结构应用不断增加,但对于该行业来说仍然相对较新。与金属结构相比,复合材料部件的开发和认证成本很高。用于金属等各向同性材料的传统无损评估 (NDE) 方法可能不适用于复合材料应用,因此是开发新结构复合材料的成本和复杂性的一个因素。此外,复合材料中感兴趣的缺陷与金属有很大不同。因此,高质量的复合材料参考标准对于获得可靠且可量化的 NDE 结果至关重要。理想情况下,参考标准包含的缺陷或损坏的 NDE 指示最接近实际缺陷/损坏造成的缺陷或损坏。它们还应该易于复制且制造成本低廉。美国宇航局的先进复合材料项目与行业合作伙伴合作,开发了一套复合材料标准,其中包含一系列经过验证的缺陷,这些缺陷代表了航空航天复合材料中常见的缺陷。本文将概述制造的标准、用于制造它们的制造计划、包含的缺陷类型以及已执行的验证测试。还讨论了针对这些标准进行的实验室间“循环”测试。本文将介绍一份正在编制的指导文件,该文件概述了复合材料特有的具有挑战性和关键性的缺陷的相关检查程序,而传统技术可能不适用。关键词:复合材料、NDE、标准简介在先进复合材料项目 (ACP) 中,NASA 正在与航空航天业的成员合作,以缩短开发和认证商用和军用航空器复合材料结构的时间表。NASA 和业界已确定三个重点领域或技术挑战,它们对当前的认证时间表有重大影响。一个重点领域,技术挑战 (TC2) - 快速检查,涉及通过开发定量和实用的检查方法、数据管理方法、模型和建模工具来提高检查吞吐量。TC2 的目标之一是开发用于快速定量表征缺陷的工具。复合材料在飞机制造中用于结构应用的采用持续增加,但对于该行业来说仍然相对较新,与金属结构相比,开发和认证成本相对较高。用于金属等各向同性材料的传统无损评估 (NDE) 方法可能不适用于复合材料应用,并且是导致开发新结构复合材料的成本和复杂性的一个因素。此外,复合材料中值得关注的缺陷与金属有显著不同。因此,在 ACP TC2 框架下,NASA 启动了对航空航天工业中复合材料结构部件 NDE 的当前实践状态 (SoP) 的评估,并确定了哪些因素会影响复合材料的 NDE 过程。该评估涵盖了飞机工业的固定翼、旋翼和推进部分,并得到了航空工业相应部门的意见。评估确定了关键缺陷类型、当前检查方法、NDE 数据交换方法、适合自动化或改进的流程和方法,以及与复合材料检查和认证相关的其他问题
人员认证航空工业协会于 1996 年批准 NAS 410(国家航空标准)作为行业标准。自 1997 年 12 月 31 日起,它取代了 MIL STD 410 E。NAS 410 级别 I、级别 II 和级别 III 培训和认证应由获得 NAS 410 级别 III 认证的人员在特定方法技术和产品上进行。 NAS 410 认证是向海外客户出口飞行硬件的强制性要求(例如:英国劳斯莱斯、法国空客、美国霍尼韦尔等),也是印度民航局 (DGCA) 对颁发无损检测方法能力证书 (COC) 的强制性要求,各政府监管机构的批准 DGCA 对无损检测的批准 在民用飞机上进行无损检测的人员,应从印度民航局 (DGCA) 获得颁发的能力证书 (COC)。民航要求 (CAR) 详细说明在第 2 节 - 适航系列“L”,第 xiv 部分,1992 年 1 月 20 日。修订版 2,2006 年 5 月 23 日。CAR 的本部分规定了颁发和更新能力证书的年龄、知识、资格、技能和医疗标准方面的要求。每六个月续期一次,费用为 2500 卢比。DGAQA 无损检测认证 对于军用飞机的无损检测,人员必须经过政府监管机构飞机质量保证局局长的批准。国际认证 NADCAP(国家航空