1 马切拉塔医院肿瘤科,Via Santa Lucia 2, 62100 马切拉塔,意大利 2 拉蒙尼卡哈尔医院肿瘤内科,28029 马德里,西班牙 3 卡梅里诺大学制药与健康产品科学学院,62032 卡梅里诺,意大利 4 科罗拉多大学安舒茨医学院,奥罗拉,CO 80045,美国 5 博洛尼亚大学 IRCCS 医院肿瘤内科,Via Albertoni-15, 40138 博洛尼亚,意大利 6 帕尔马大学医学与外科系,43121 帕尔马,意大利 7 罗斯班克肿瘤内科中心,129 Oxford Road, Saxonwold,约翰内斯堡 2196,南非 8 比勒陀利亚大学健康科学学院免疫学系,Doctor Savage Road 和 Bophelo Road 拐角处,比勒陀利亚 0002,南非 9 马德里 MD 安德森癌症中心肿瘤内科,28033 马德里,西班牙 * 通讯地址:sebabuti@libero.it 或 sebastiano.buti@unipr.it;电话:+39-0521-702314;传真:+39-0521-995448
atxn2基因编码ataxin-2,位于肥胖症的特质基因座中。atxn2敲除(KO)小鼠是肥胖的,耐胰岛素;但是,这种表型的原因仍然未知。此外,一些发现表明ataxin-2是代谢调节剂,但是该蛋白在下丘脑中的作用从未研究过。这项工作的目的是了解下丘脑中的Ataxin-2调节是否可以在代谢调节中发挥作用。ataxin-2在C57BL6/ ATXN2 KO小鼠的下丘脑中过表达/重新建立了喂食或高脂饮食(HFD)。通过对ataxin-2编码的慢病毒载体的立体定位注射来实现此递送。我们首次显示HFD降低了小鼠下丘脑和肝脏中的ataxin-2水平。特异性下丘脑性触及2过表达可防止HFD诱导的肥胖症和胰岛素抵抗。ataxin-2在ATXN2 KO小鼠中重新建立,改善了代谢功能障碍而没有改变体重。此外,我们观察到ATXN2 KO中的时钟基因表达改变,这可能是代谢功能障碍的原因。有趣的是,Ataxin-2下丘脑的重建救出了这些昼夜节律。因此,下丘脑中的ataxin-2是体重,胰岛素敏感性和时钟基因表达的决定因素。ataxin-2通过调节时钟基因在昼夜节律中的潜在作用可能是调节代谢的相关机制。总的来说,这项工作表明下丘脑Ataxin-2是代谢法规的新参与者,这可能有助于发展新陈代谢疾病的新策略。
摘要:人类和其他生物体通过大气、饮用水、食物或直接接触不断接触成千上万种化学物质。这些化学物质中很大一部分浓度很低,即使在未观察到不良影响水平 (NOAEL) 下也可能产生协同作用。复杂的污染物混合物很难通过传统的毒理学方法进行评估。人们越来越关注不同污染物如何通过影响昼夜节律而诱导人体不良的生理功能。然而,从大量化学物质或其复杂混合物中筛选出具有昼夜节律破坏作用的化合物非常困难。我们通过 CRISPR/Cas9 建立了稳定的萤火虫荧光素酶报告基因敲入 U2-OS 细胞系,以筛选昼夜节律破坏污染物。荧光素酶基因插入核心时钟基因 BMAL1 下游并由内源启动子控制。与使用外源启动子的检测系统相比,这些细胞能够检测干扰 BMAL1 基因表达介导的昼夜节律系统的化合物。U2-OS 敲入细胞显示,当用 BMAL1 抑制剂和激活剂处理时,BMAL1 和荧光素酶活性发生了平行变化。此外,荧光素酶报告基因具有高灵敏度,比传统毒理学方法更快、更经济。敲入细胞系可用于高通量、高效筛选破坏昼夜节律的化学物质,例如药物和污染物。
原子物理学的最新发展使多体纠缠状态的实验生成能够提高量子传感器的性能,超过标准量子极限(SQL)。该极限是由量子调查的固有投影噪声施加的。在本角度文章中,我们描述了常用的实验方法,以创建多体纠缠状态以操作SQL以外的量子传感器。特别是,我们专注于将量子纠缠应用于最新的光原子时钟的潜力。此外,我们提出了最近开发的时间反转协议,这些方案使用具有高量子渔民信息的复杂状态,而无需子-SQL测量分辨率。我们讨论了基于此类协议的量子限制量子计量学的前景。
摘要。本项目开发了一种新型的快速同步二进制计数方法,用于实用计数器,计数周期最小。同步二进制计数器在许多应用中都是必需的,因为它速度快,还可以支持较大的位宽。基本上,由于扇出量大和进位链长,早期计数器的计数率有限,尤其是在计数器尺寸不小的情况下。它采用单比特约翰逊计数器来降低整个硬件的复杂性,然后复制它以减少由大量扇出引起的传播延迟。在本文中,重新编程其中使用的时钟以用于以不同时钟速率运行的各种应用,并且由于重新编程时钟,延迟值会发生变化,临界值可能会因不同的速率而变化。计数器输出结果是针对各种位获得的,最高可达 64 位,因此该设计提供了各种时钟速率,面积和延迟各不相同。
包括神经蛋白浮动的抽象炎症被认为是保护性反应,可用于修复,再生和恢复中枢神经系统中受损的组织。由于慢性应激,自由基的年龄相关,亚临床感染或其他因素导致生存率降低和神经元死亡增加,持续的肿瘤肿瘤。 昼夜节日症状是改变睡眠/唤醒周期的症状,是神经退行性疾病的最早迹象之一。 大脑的特异性或核心昼夜运动脑脑和肌肉ARNT(芳基氢核受体核转运剂)类似蛋白1(BMAL1)或反式Rev-erbα的蛋白质均具有损害的神经功能和cognitive-cognitive-Mance。 始终如一地,已显示出炎性细胞因子和宿主免疫反应的转录本与昼夜节律的破坏并行相同。 糖皮质激素既表现出类似于核心时钟反式激活者BMAL1和组织特异性超拉节奏的节奏的糖皮质激素,这对于控制神经炎症和重新建立稳态至关重要。 被广泛接受的是,糖皮质激素抑制核因子-Kappa B(NF-κB)介导的反式激活并抑制炎症。 最近的机械阐明表明,核心时钟成分还调节NF-κB介导的大脑和外围组织的反式激活。持续的肿瘤肿瘤。昼夜节日症状是改变睡眠/唤醒周期的症状,是神经退行性疾病的最早迹象之一。大脑的特异性或核心昼夜运动脑脑和肌肉ARNT(芳基氢核受体核转运剂)类似蛋白1(BMAL1)或反式Rev-erbα的蛋白质均具有损害的神经功能和cognitive-cognitive-Mance。始终如一地,已显示出炎性细胞因子和宿主免疫反应的转录本与昼夜节律的破坏并行相同。糖皮质激素既表现出类似于核心时钟反式激活者BMAL1和组织特异性超拉节奏的节奏的糖皮质激素,这对于控制神经炎症和重新建立稳态至关重要。被广泛接受的是,糖皮质激素抑制核因子-Kappa B(NF-κB)介导的反式激活并抑制炎症。最近的机械阐明表明,核心时钟成分还调节NF-κB介导的大脑和外围组织的反式激活。In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF- κ B signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroin fl ammation-神经变性。
高精度和高准确度地测量、保持和分配时间的能力是科学探索的基础能力。除了基础科学之外,时间同步也是公共和私人通信、导航和测距、分布式传感等技术应用不可或缺的功能。我们建议实施一个由卫星和地面时钟组成的量子网络,该网络能够实现皮秒精度的量子时钟同步。实施拟议的 QCS 网络具有双重优势:(1) 为传统应用提供比目前更准确、更强大、更安全的时间同步网络,(2) 可满足未来量子通信网络更严格的同步要求。
我们考虑时钟游戏——一项在量子信息论框架下制定的任务——它可用于改进现有的量子增强望远镜方案。了解恒星光子何时到达望远镜的问题被转化为一个抽象的游戏,我们称之为时钟游戏。提供了一种制胜策略,即执行量子非拆除测量,以验证光子占据了哪些恒星时空模式而不干扰相位信息。我们证明了赢得时钟游戏所需纠缠成本的严格下限,其中所需纠缠比特的数量等于被区分的时间段数量。这个纠缠成本下限适用于任何旨在通过局部测量非破坏性地提取入射光子时间段信息的望远镜协议,我们的结果意味着 Khabiboulline 等人的协议 [Phys. Rev. Lett. 123, 070504 (2019) ] 在纠缠消耗方面是最佳的。我们还考虑了相位提取的全部任务,并表明恒星相位的量子 Fisher 信息可以通过局部测量和共享纠缠来实现,而无需非线性光学操作。随着辅助量子比特数量的增加,可以渐近地实现最佳相位测量,而如果允许非线性操作,则需要单个量子比特对。
作为量子科学中的重要资源,量子纠缠可在计算、密码学和材料科学等领域实现广泛的应用。其中一个强大的应用领域是计量学,纠缠多粒子量子态 1 – 8 的特性可提供更高的灵敏度和更高带宽的传感器。将此类增强功能与最先进的时间和频率计量学 9 – 14 (即光学原子钟)相结合一直是量子计量领域的明确目标。构建量子增强光学时钟对大地测量学 15、16、引力波探测 17 – 19 以及探索超出标准模型的物理学 20 具有广泛的影响。存在多种创建计量上有用的纠缠的方法。在中性原子光晶格钟中,已经提出了许多使用腔量子电动力学、里德堡相互作用或碰撞相互作用的方法 21 – 26 — 事实上,最近,已经使用集体腔量子电动力学相互作用在光钟跃迁中产生了自旋压缩态 27 。在囚禁离子中,光学分离量子比特上的纠缠的提议和实现依赖于库仑晶体模式介导的自旋-自旋相互作用,允许高效地产生纠缠和格林伯格-霍恩-泽林格态,最多可产生 24 个离子光学量子比特 28 或空间分布的单粒子之间的光子量子网络