然而,随后的50年见证了对心律不齐机制及其生物分子基础4,5的增强的理解。这伴随着发现相当数量的其潜在膜离子通道和细胞内离子转运调节蛋白分子,以及它们在正常和心律不齐活性中的精确作用6。在过去的二十年中,合并证据的合并强烈表明,心脏的这种正常电功能是膜离子通道与细胞内离子转运调节蛋白分子之间动态和精心策划的相互作用的结果。这些见解都增强了我们对现有药物作用的药理机制的理解,并为药物开发提供了新颖的生理靶标。然而,临床实践可能并未从这些进步中受益。心律不齐仍然是一个主要的临床问题。他们的疗法在心脏病的许多其他领域经常落后。
CLONETS 的目标是准备创建一个可持续的泛欧光纤网络,为研究基础设施提供高性能的 T&F 服务,并为广泛的工业和社会应用提供支持。
1.在室温和标称电源电压下进行生产测试,使用电源和温度范围的保护带。2.在室温和标称电源电压下进行生产测试,使用相关测试使用电源和温度范围的保护带。3.在室温和标称电源电压下进行生产测试。4.QA 样品测试。5.根据 1、2 或 3 级计算的结果。6.未测试。由设计模拟保证。7.未测试。基于标称部件的特性。8.未测试。根据类似产品的现有设计/特性数据。9.间接测试。
基于光学跃迁的原子钟长期以来一直具有潜力,可以通过使用激光冷却铯原子中的射频跃迁来测量超越最新基准水平的时间和频率。研究人员已经探索了多种架构来实现这种先进的光学计时器。其中一种系统是光学晶格钟,它基于光学晶格中限制的大量超冷中性原子,具有极高的光学跃迁质量因子 [1] 。晶格钟已开发了大约十年。大量的原子数使测量能够以较低的噪声完成原子态的量子投影。在专门设计的激光势中,严格的原子限制使原子激发不受多普勒和运动效应的影响,这些效应对于未捕获的原子来说是明显的。远失谐激光势在魔法波长下工作,其中被探测电子态的光移被抵消 [2] 。在首次提出光格子钟 [3] 之后,早期演示
在捕获原子钟中,退相干的主要来源通常是振荡器的相位噪声。在这种情况下,我们通过组合多个原子集合来获得理论上的性能提升。例如,可以将 M 个 N 原子集合与各种探测周期组合,以将频率方差降低到标准拉姆齐时钟的 M 2 − M 倍。如果某些集合的原子相位以降低的频率演变,则可能出现类似的指数级改进。这些集合可以由具有较低频率跃迁的原子或分子构成,或由动态解耦生成。具有降低频率或探测周期的集合仅负责计数 2 π 相位包裹的整数,并且不影响时钟的系统误差。具有高斯初始状态的量子相位测量允许比拉姆齐光谱更小的集合大小。
摘要 通过模拟对基于 2 到 20 个纠缠原子的几种时钟协议的稳定性进行了数值评估,其中包括由于经典振荡器噪声引起的退相干效应。在这种情况下,André、Sørensen 和 Lukin [PRL 92, 239801 (2004)] 提出的压缩态与基于 Ramsey 协议的非纠缠原子时钟相比,提供了更低的不稳定性。当模拟超过 15 个原子时,Bužek、Derka 和 Massar [PRL 82, 2207 (1999)] 的协议具有较低的不稳定性。对具有 2 到 8 个量子比特的最佳时钟协议进行大规模数值搜索,与 Ramsey 光谱相比,时钟稳定性有所提高,对于两个量子比特,性能超过了分析得出的协议。在模拟中,激光本振由于闪烁频率 (1/ f ) 噪声而退相干。根据量子比特的投影测量,反复校正振荡器频率,假设量子比特彼此之间不会退相干。关键词:量子计量、自旋压缩、原子钟
数字时钟应使用全球定位系统 (GPS) 接收器来接收正确时间。时钟应具有本地电池供电的实时时钟 (RTC),该时钟应与从 GPS 收到的时间信息同步。如果 GPS 系统发生故障,应显示时钟的本地 RTC 时间。数字时钟应具有内置 GPS 接收器,并应与从 GPS 收到的时间同步。有线网络时,应使用主时钟来同步数字时钟。在这种情况下,数字时钟将作为从属时钟工作,而无需任何 GPS 接收器。3.一般规格: 3.1 应能够将数字时钟悬挂或安装在站台、车站建筑物的遮阳篷/屋顶下方或火车站/建筑物的墙壁上或大厅/主入口内。3.2 数字钟应防尘、防风雨、防水和防震,符合 IP 54 标准。3.3 数字钟上的显示应无闪烁。3.4 数字钟上的显示应不受 25 KV 牵引线或电磁感应或任何其他静电感应的影响。3.5 数字钟应覆盖有防紫外线的稳定聚碳酸酯板,厚度至少为 3mm,以提供良好的可视性和防尘保护。应使用没有任何接缝的单块聚碳酸酯板覆盖时钟。
• 本课程深入了解锁相时钟,以及获得锁相环 (PLL) 的系统视角和电路设计方面的能力,适用于各种应用。在本课程的前半部分,将讨论 PLL 的基本理论分析和系统/电路设计注意事项。课程的后半部分包括大量讲座,涵盖各种 PLL 应用中的实际设计方面。耦合、可测试性和片上补偿等一些高级主题对于那些对片上系统 (SoC) 设计和高级混合信号 IC 设计感兴趣的人也很有用。通过本课程,学生希望学习以下内容; - 时钟生成/同步在现代通信系统中的作用 - PLL 的基本概念和理论分析 - 系统设计视角和架构 - 实际电路设计方面 - 高级主题;耦合、可测试性、片上补偿……