昼夜节律功能障碍是帕金森病(PD)的标志,在PD患者中已经描述了核心时钟基因BMAL1的表达降低。bmal1是核心昼夜节律函数所必需的,但也具有非节律函数。种系BMAL1缺失会导致小鼠的脑氧化应激和突触丧失,并且会加剧多巴胺能神经变性,以响应毒素MPTP。在这里,我们检查了细胞类型 - 特异性BMAL1缺失对体内多巴胺能神经元活力的影响。我们观察到,BMAL1的全球,产后缺失导致酪氨酸羟化酶 +(Th +)多巴胺能神经元的自发丧失。这不是通过光诱导的行为昼夜节律破坏来复制的,也不是由星形胶质细胞或小胶质细胞特异性BMAL1缺失引起的。然而,泛神经元或神经元特异性BMAL1缺失会导致SNPC中Th +神经元的细胞自主丧失。bmal1缺失并未改变α-突触核蛋白原纤维注射后神经元丧失的百分比,尽管BMAL1 -KO小鼠在基线时的神经元较少。转录组学分析表明,参与氧化磷酸化和帕金森氏病的途径失调。这些发现证明了BMAL1在调节多巴胺能神经元存活中的细胞自主作用,并且可能对PD的神经保护具有重要意义。
1个PISA大学生物学系细胞和发育生物学单位,意大利PISA 56127; marta.picchi@phd.unipi.it(m.p。) 2哈佛大学,哈佛大学,哈佛大学,波士顿路易斯德大街77号,但02115,但使用3个中心来整合皮萨(CISU)的科学仪器(CISUP),56126 PISA,意大利PISA,意大利PISA,意大利4 cex Biotechnologic franco salvatore salvatore,80131 Naples naples naples naples,Itallang franco salvatore那不勒斯大学“ Federico II”,80055 Portici,意大利Portici 6环境,生物学和药物科学和技术学系的农业科学系“ LUIGI VANVITELLI” Systems@Unitn,意大利理工学院,38068意大利rovereto *通信:giacomo_maddaloni@hms.harvard.edu(G.M. ) ); massimo.pasqualetti@unipi.it(m.p。) †这些作者为这项工作做出了贡献。1个PISA大学生物学系细胞和发育生物学单位,意大利PISA 56127; marta.picchi@phd.unipi.it(m.p。)2哈佛大学,哈佛大学,哈佛大学,波士顿路易斯德大街77号,但02115,但使用3个中心来整合皮萨(CISU)的科学仪器(CISUP),56126 PISA,意大利PISA,意大利PISA,意大利4 cex Biotechnologic franco salvatore salvatore,80131 Naples naples naples naples,Itallang franco salvatore那不勒斯大学“ Federico II”,80055 Portici,意大利Portici 6环境,生物学和药物科学和技术学系的农业科学系“ LUIGI VANVITELLI” Systems@Unitn,意大利理工学院,38068意大利rovereto *通信:giacomo_maddaloni@hms.harvard.edu(G.M. ) ); massimo.pasqualetti@unipi.it(m.p。) †这些作者为这项工作做出了贡献。2哈佛大学,哈佛大学,哈佛大学,波士顿路易斯德大街77号,但02115,但使用3个中心来整合皮萨(CISU)的科学仪器(CISUP),56126 PISA,意大利PISA,意大利PISA,意大利4 cex Biotechnologic franco salvatore salvatore,80131 Naples naples naples naples,Itallang franco salvatore那不勒斯大学“ Federico II”,80055 Portici,意大利Portici 6环境,生物学和药物科学和技术学系的农业科学系“ LUIGI VANVITELLI” Systems@Unitn,意大利理工学院,38068意大利rovereto *通信:giacomo_maddaloni@hms.harvard.edu(G.M. )); massimo.pasqualetti@unipi.it(m.p。)†这些作者为这项工作做出了贡献。
1 Max Perutz Labs,维也纳大学,维也纳生物中心,维也纳,奥地利,2 Alfred Wegener Institute Helmholtz极地和海洋研究中心,德国Bremerhaven,德国Bremerhaven,Vienna Biocenter Phd Proghna dienna Biocenter Phardienna dienna Biocation and Maxtienna,Vienna,Vienna,Vienna,Vienna,Vienna,Vienna,4佩鲁茨实验室,维也纳大学,维也纳医科大学,维也纳,奥地利,5动物生理学和神经生物学司,库尤文库芬,比利时,鲁南,6个神经和发育生物学系,维也纳大学,维也纳大学,维也纳大学,维也纳,奥地利,奥地利7研究平台,奥地利,奥法利亚,奥法利亚,奥法利亚,奥法利亚,奥地利,维也纳,维也纳,维也纳,维也纳,维也纳,维也纳,维也纳,维也纳,维也纳,维也纳,维也纳,维也纳,维也纳,维也纳。环境(ICBM),数学与科学学院,Carl von Ossietzky Universita tember,德国奥尔登堡
结果:在线性分析的频率分析中,睡眠期间的副交感神经指数 nHF 明显高于平均 24 小时周期(平均睡眠 HRV [标准差] vs. 平均 24 小时 [标准差],95% 置信区间,p 值,r 系列:0.24 [0.057] vs. 0.23 [0.045],0.006–0.031,p = 0.005,r = 0.49)。关于时间域分析,副交感神经指数 SDNN 和 RMSSD 在睡眠期间也明显较高(SDNN:179.7 [66.9] vs. 156.6 [53.2],14.5–31.7,p < 0.001,r = 0.71 RMSSD:187.0 [74.0] vs. 165.4 [62.2],13.2–30.0,p < 0.001,r = 0.70)。在非线性分析的几何方法中,副交感神经指数 SD1 和 SD2 在睡眠期间显示出明显更高的值(SD1:132.4 [52.4] vs. 117.1 [44.0],9.3–21.1,p < 0.001,r = 0.70 SD2:215.0 [80.5] vs. 185.9 [62.0],17.6–40.6,p < 0.001,r = 0.69)。此外,副交感神经指数 SDNN、RMSSD、SD1 和 SD2 的昼夜节律项目在睡眠期间呈现正峰值。
Adamson, CL、Alexander, B.、Ball, G.、Beare, R.、Cheong, JLY、Spittle, AJ、Doyle, LW、Anderson, PJ、Seal, ML 和 Thompson, DK (2020)。使用基于表面的墨尔本儿童区域婴儿大脑图谱 (M-CRIB-S) 对新生儿皮质进行分区。科学报告 (Sci Rep),10,4359。Ahmad, SI、Rudd, KL、Lewinn, KZ、Mason, WA、Murphy, L.、Juarez, PD、Karr, CJ、Sathyanarayana, S.、Tylavsky, FA 和 Bush, NR (2021)。母亲童年创伤和产前压力与儿童行为健康有关。健康与疾病发育起源杂志,13,483–493。 https://doi.org/10.1017/s2040174421000581 Alexander, B., Murray, AL, Loh, WY, Matthews, LG, Adamson, C., Beare, R., Chen, J., Kelly, CE, Rees, S., Warfield, SK, Anderson, PJ, Doyle, LW, Spittle, AJ, Cheong, JLY, Seal, ML, & Thompson, DK (2017)。新生儿皮质和皮质下大脑新图谱:墨尔本儿童区域婴儿大脑 (M-CRIB) 图谱。神经影像学,147,841–851。Allada, R. 和 Bass, J. (2021)。医学中的昼夜节律机制。新英格兰医学杂志,384,550–561。
昼夜节律参与了身体许多方面的调节,包括细胞功能,身体活动和疾病。昼夜节律障碍通常早于神经退行性疾病的典型症状,不仅是非运动症状,而且是其发生和进展的原因之一。神经胶质细胞具有调节其功能以维持脑发育和稳态的昼夜节律。新兴证据表明,小胶质细胞时钟参与了许多生理方面的调节,例如细胞因子释放,吞噬作用,营养和代谢支持,以及小胶质细胞时钟的破坏可能会影响帕金森疾病的多个方面,尤其是帕克森疾病的多个方面,尤其是神经毒素的方法。在此,我们回顾了昼夜节律控制健康和疾病功能的最新进展,并讨论了神经退行性疾病中小胶质细胞钟的新药理干预措施。
rett综合征(RTT)是一种X连锁的发育性脑膜病,患病率约为10,000名女性[1]。典型的RTT和非典型RTT都属于RTT一词。在大多数患者中发现MECP2突变。非典型RTT包括单基因疾病,例如FOXG1综合,CDKL5缺乏症,MECP2重复综合体和与MECP2相关的严重新生儿性脑病,以及其他与其他发育性疾病有关3]。RTT患者的总死亡率为每年1.2%,其中20-26%是突然的和出乎意料的,并且怀疑多达35%的人是心肺逮捕。心脏呼吸停滞的遗体尚未完全阐明。主要原因包括癫痫发作(即癫痫中突然未诊断的死亡),自主性功能障碍或心律不齐[4]。Multiple cardiac abnormalities have been associated with RTT including subclinical biventricular myocardial dysfunc- tion, reduced heart rate (HR) variability, cardiac arrhythmias, and abnormal cardiac repolarization on electrocardiogram (ECG) (such as prolonged heartrate corrected QT (QTc) inter- val and nonspecific T-wave abnormalities) [5-11]。由于QTC的延长和心脏重极化的异质性增加与危及生命的心室心律不齐的风险增加有关,因此它们可能与RTT猝死有关[12,13]。然而,QTC测量值在RTT中是可变的,而T波异常仅在一个小病例序列的RTT [9,14]中被定性地描述为非特异性。自动鉴定异常心脏复极化的心电图特征对于RTT患者的风险分层和监视可能很重要。我们试图比较T波的定量形态特征,包括扁平度,不对称性和RTT患者之间的缺口和正常对照组。我们还调查了Re-
菌株尖峰蛋白(3-6)。与中和抗体不同,疫苗诱导的T细胞反应可以交叉对Omicron Spike蛋白(9-15)进行交叉,这可能部分解释了对严重疾病的保护。covid-19 mRNA疫苗对先前的VOC(包括三角洲变体)具有强大的功效;但是,在2剂量共证实mRNA疫苗接种方案后,对Omicron变体的疗效要低得多(16-19)。一项研究发现,在第二剂剂量后14-90天,针对Omicron变异感染的疫苗功效为44%,并且随着时间的推移急剧下降(16)。第二次研究发现2 BNT162B2剂量后针对有症状感染的疫苗有效性在2-4周时为65.5%,但在25周后,疫苗降至8.8%(19)。第三次疫苗剂量增加了所有VOC的保护;但是,与三角洲变体相比,对Omicron变体的疗效仍然要低得多,并且随着时间的推移而下降。Andrews等。 报道说,在BNT162B2助推器剂量后2-4周,针对有症状的Omicron变异感染的疫苗有效性增加到67.2%,然后在10周下下降至45.7%(19)。 在另一项研究中,Tseng等人。 表明,在助推器剂量对DELTA变体的疫苗有效性为2个月后,对Omicron变体的疫苗有效性为86%,47%(16)。 完全疫苗接种的个体中α变体的突破性感染与较低的中和抗体的滴度有关(20-22)和较不健壮的T细胞反应(23)。 重要的是,我们能够在突破感染发生之前研究4个突破性VR中的免疫反应。Andrews等。报道说,在BNT162B2助推器剂量后2-4周,针对有症状的Omicron变异感染的疫苗有效性增加到67.2%,然后在10周下下降至45.7%(19)。在另一项研究中,Tseng等人。 表明,在助推器剂量对DELTA变体的疫苗有效性为2个月后,对Omicron变体的疫苗有效性为86%,47%(16)。 完全疫苗接种的个体中α变体的突破性感染与较低的中和抗体的滴度有关(20-22)和较不健壮的T细胞反应(23)。 重要的是,我们能够在突破感染发生之前研究4个突破性VR中的免疫反应。在另一项研究中,Tseng等人。表明,在助推器剂量对DELTA变体的疫苗有效性为2个月后,对Omicron变体的疫苗有效性为86%,47%(16)。完全疫苗接种的个体中α变体的突破性感染与较低的中和抗体的滴度有关(20-22)和较不健壮的T细胞反应(23)。重要的是,我们能够在突破感染发生之前研究4个突破性VR中的免疫反应。然而,鉴于Omicron变体具有更多的突变,并且比以前的VOC更好地逃避中和抗体反应,因此Omicron变体突破性感染的机制可能有所不同。因此,在完全疫苗接种和增强个体中,在Omicron变异突破性感染之前和之后分析免疫反应是进口的。在这项研究中,我们在OMICRON变体激增期间,在18个接受了增强mRNA疫苗(以下称为突破性VRS)的18个人突破性感染后确定了抗体和T细胞反应。我们的数据提高了我们对接种疫苗的突破性感染的理解。
简介 昼夜节律是生物活动的每日振荡,可帮助生物体适应昼夜循环(1,2)。这些节律源自内部分子钟,可提供进化和生殖优势(3,4)。因此,人体生理学的许多方面都直接或间接地受到昼夜节律的控制,包括血压、新陈代谢、体温和睡眠时间的变化(5)。免疫系统也不例外。记录昼夜节律在免疫细胞的发育、分布和效应功能中的作用的研究正在呈指数级增长。然而,将这些知识转化为有效的临床策略仍处于起步阶段。在这里,我们回顾了有关昼夜节律和免疫之间的机制联系的最新数据,着眼于临床应用。为此,我们将疫苗接种作为如何利用昼夜节律免疫来优化医疗干预的案例研究。
需要新的策略来降低患糖尿病和/或临床结果和糖尿病并发症的风险。在这方面,昼夜节律系统的作用可能是预防糖尿病的潜在候选者。 我们回顾了从动物,临床和流行病学研究中的证据,将昼夜节律与糖尿病的病理生理学和临床结局的各个方面联系起来。 昼夜节律时钟通过在整个身体中的“中心时钟”和“外围时钟”中的“中心时钟”之间的相互作用来预期循环24小时事件,以期预期遗传,代谢,激素和行为信号。 目前,可以通过测量褪黑激素和糖皮质激素水平,核心体温,外周血,口腔粘膜,毛囊,静脉卵泡,静止性周期,睡眠习惯,睡眠习惯和昼夜节律来评估人类的昼夜节律节奏。 在这篇综述中,我们总结了各种昼夜节律的未对准,例如改变的灯光,睡眠效果,静止效果,禁食喂养,转移工作,夜间表型和社交喷气板,以及可能与糖尿病患者在糖尿病和糖尿病患者中差的糖尿病状况不佳的时钟基因突变。 靶向昼夜节律系统的关键组成部分可以在将来提供潜在的候选者,以治疗和预防2型糖尿病。在这方面,昼夜节律系统的作用可能是预防糖尿病的潜在候选者。我们回顾了从动物,临床和流行病学研究中的证据,将昼夜节律与糖尿病的病理生理学和临床结局的各个方面联系起来。昼夜节律时钟通过在整个身体中的“中心时钟”和“外围时钟”中的“中心时钟”之间的相互作用来预期循环24小时事件,以期预期遗传,代谢,激素和行为信号。目前,可以通过测量褪黑激素和糖皮质激素水平,核心体温,外周血,口腔粘膜,毛囊,静脉卵泡,静止性周期,睡眠习惯,睡眠习惯和昼夜节律来评估人类的昼夜节律节奏。在这篇综述中,我们总结了各种昼夜节律的未对准,例如改变的灯光,睡眠效果,静止效果,禁食喂养,转移工作,夜间表型和社交喷气板,以及可能与糖尿病患者在糖尿病和糖尿病患者中差的糖尿病状况不佳的时钟基因突变。靶向昼夜节律系统的关键组成部分可以在将来提供潜在的候选者,以治疗和预防2型糖尿病。