摘要 机械稳定性和化学稳定性不良是限制超疏水涂层广泛工业应用的重要因素之一。本研究采用混合电沉积法合成了Ni-P@Ni分级纳米结构涂层作为稳定涂层。研究了所制备样品的润湿性、耐腐蚀性、机械稳定性和化学稳定性。研究结果表明,在Ni纳米锥表面涂覆非晶态Ni-P涂层可提高耐腐蚀性,同时增强机械稳定性和化学稳定性。此过程将腐蚀电流密度从1.02降低到0.0076 µA.cm -2 。电化学阻抗谱 (EIS) 结果也显示,涂覆Ni-P涂层后R dl 增加。此外,通过在200 cm机械稳定性测试后创建Ni-P涂层并在3.5%NaCl电解质中浸泡8天,可以保持疏水状态。这项研究介绍了一种创建稳定超疏水涂层的新方法。
摘要 — 当前的半导体器件制造通常需要集成热预算较低的退火工艺步骤;其中,脉冲激光退火 (LA) 是一种可靠的选择。因此,使用 LA 专用技术计算机辅助设计 (TCAD) 模型正在成为开发这种特殊加热方法的支持。无论如何,已经在学术或商业软件包中实现的模型通常会考虑一些近似值,如果将它们应用于相当常见的纳米器件配置,可能会导致不准确的预测:即具有纳米宽元素的结构,其中也存在非晶态口袋。特别是,在这些情况下,可能会发生非扩散热传输和爆炸性结晶。在这里,我们介绍了 LA TCAD 模型的升级,允许模拟这些现象。我们将证明这些模型可以可靠地集成到当前的 TCAD 软件包中,并讨论某些特定情况下数值解特征的主要特征。
对可持续清洁能源的需求推动了热电 (TE) 材料的发展,这种材料可将热能直接转化为电能并实现分布式冷却。[1–3] 能量转换效率通过无量纲性能系数 zT = S 2 σ T / ( κ ele + κ lat ) 来衡量,其中 S 、σ 、T 、κ ele 和 κ lat 分别为塞贝克系数、电导率、绝对温度、电子热导率和晶格热导率。[4–8] 尽管 zT 的表达式看起来很简单,但增加其值却是一项艰巨的任务。具体而言,虽然在半导体中通常获得较高的 S,但在金属中会发现较大的 σ ,而在非晶态材料中会实现较低的 κ lat 。[6,9] 这已经表明优化要求很复杂。显然,相关优化参数 S 、 σ 和 κ ele 紧密相关。这阻碍了 zT 的改善和优质热电材料的识别。因此,
在过去十年中,许多晶体硫族化物由于其不寻常的物理特性和键合机制而引起了人们的关注。[1–6] 对于从相变存储器件[7–9]和光子开关[10–12]到热电器件[13–17]到利用拓扑效应的原型器件[18–20]的许多应用来说,通过改变化学计量或退火等方式来调整电传输的能力至关重要。 特别是,控制电荷载流子浓度和迁移率将非常有利。 例如,对于基于拓扑绝缘体的导电表面态的器件,通常重要的是消除不需要的体载流子源以抑制体传输。 对于热电装置,需要具有精确控制载流子浓度的 n 型和 p 型材料。这些方向的努力包括对一系列三元碲化物中载流子类型的化学调节[21,22],以及在 GeSbTe (GST) 化合物(如 Ge 2 Sb 2 Te 5 )和类似的无序硫族化物中通过热退火诱导的安德森跃迁的观察[23–27]。这些硫族化物位于 IV-VI 和 V 2 VI 3 材料之间的连接线上(例如,GST 中的 GeTe 和 Sb 2 Te 3 )。在前一种情况下,[22] 化学计量变化用于诱导从电子到空穴占主导地位的电荷传输转变,而在后一种情况下,[23–27] 化学计量保持恒定,通过退火结晶相来调节无序水平,导致在增加有序性时发生绝缘体-金属转变。非晶态 GST 结晶为亚稳态、无序、岩盐状相,其中 Te 占据阴离子位置,Ge、Sb 和空位随机占据阳离子位置。通过进一步退火立方体结构可获得稳定的六方相。这三个相都是半导体,但由于自掺杂效应,即由于原生点缺陷导致导电的块状状态被空穴占据,并将费米能级移向价带最大值,因此结晶态显示出高浓度的 p 型载流子。这种现象导致非晶相和结晶相之间产生强烈的电对比,这在
摘要:本研究在高性能芳香族聚磺酰胺 (PSA) 纤维上设计并构建了双层纳米涂层,以实现强大的导电和电磁干扰 (EMI) 屏蔽。更具体地说,首先通过化学镀镍 (Ni) 或镍合金 (Ni-P-B) 赋予 PSA 纤维必要的电导率。之后,进行银电镀以进一步提高复合材料的性能。彻底研究了所提出的包覆纤维的形貌、微观结构、环境稳定性、力学性能和 EMI 屏蔽性能,以检查电沉积对非晶态 Ni-P-B 和结晶 Ni 基材的影响。获得的结果表明,PSA@Ni@Ag 和 PSA@Ni-P-B@Ag 复合纤维均具有高环境稳定性、良好的拉伸强度、低电阻和出色的 EMI 屏蔽效率。这表明它们在航空航天、电信和军事工业中具有广泛的应用前景。此外,PSA@Ni-P-B@Ag纤维配置似乎更合理,因为它表现出更光滑、更致密的银表面以及更强的界面结合,从而导致更低的电阻(185 m Ω cm − 1 )和更好的屏蔽效率(X波段为82.48 dB)。
摘要 利用反应脉冲直流磁控溅射技术进行了一项实验研究,探索了在 623 K (± 5K) 下沉积的半导体氧化钇薄膜的光谱和结构特性。根据 x 射线衍射和透射电子显微镜测量的结果,一氧化钇很可能在 β-Y 2 O 3 和 α-Y 2 O 3 之间的过渡区中形成,并伴有晶体 Y 2 O 3 。由于 4d 和 5s 轨道之间的能量分离低和/或相应轨道亚能级的自旋状态不同,一氧化物的稳定性在热力学意义上最有可能受晶体大小的自身限制。与金属氧化物立方结构相比,这种行为会导致晶体结构扭曲,并且还会影响纳米晶/非晶相的排列。此外,椭圆偏振光谱法表明半导体氧化钇的形成特征比结晶的 Y 2 O 3 更显著,且大多为非晶态。我们的目的是利用目前的研究结果,加深对不寻常价态 (2+) 钇的形成动力学/条件的理解。
众所周知,由于电子表面散射,传统金属(如铜)的电阻率在薄膜中会增加,从而限制了金属在纳米级电子器件中的性能。在这里,我们发现在相对较低的 400°C 温度下沉积的磷化铌 (NbP) 半金属中,随着薄膜厚度的降低,电阻率会异常降低。在厚度小于 5 纳米的薄膜中,室温电阻率(1.5 纳米厚的 NbP 约为 34 微欧姆厘米)比我们的块体 NbP 薄膜的电阻率低六倍,并且低于类似厚度的传统金属(通常约为 100 微欧姆厘米)。NbP 薄膜不是晶体,而是在非晶态基质内表现出局部纳米晶体、短程有序。我们的分析表明,较低的有效电阻率是由通过表面通道的传导以及薄膜厚度减小时的高表面载流子密度和足够好的迁移率引起的。这些结果和在此获得的基本见解可以实现超越传统金属限制的超薄、低电阻率纳米电子线。
摘要 本研究的目的是通过嵌入铜和连续碳纤维导电元件来开发和评估增材制造部件的自感应能力。使用自定义 g 代码在基于材料挤出的 Anisoprint A4 机器上制造了两组测试样本。每组都包含非晶态热塑性基质中的铜和连续碳纤维。通过改进美国材料与试验协会 (ASTM D790) 三点加载系统开发了一种量身定制的测试装置。在弯曲载荷下进行电阻测量,以评估每个测试样本的自感应能力。结果证实,材料挤出技术可以生产自感应部件。电阻呈线性增加(传感公差 <±2.6%,R 2 >93.8% p 值 < 0.005),与施加的力和应变建立了很强的相关性。这项工作允许创建智能部件,以促进工业 4.0 所需的状态监测和预防性维护所需的大数据收集、分析和基于证据的决策。
电致变色 (Electrochromic, EC) 是材料的光学属 性 ( 透过率、反射率或吸收率 ) 在外加电场作用下发 生稳定、可逆颜色变化的现象 [1] 。 1961 年 , 美国芝 加哥大学 Platt [2] 提出了 “ 电致变色 ” 的概念。到 1969 年 , 美国科学家 Deb [3] 首次报道了非晶态三氧化钨 (Tungsten Trioxide, WO 3 ) 的电致变色效应。随后 , 人 们开始对电致变色材料进行了广泛而深入的研究。 20 世纪 80 年代 , “ 智能窗 ” 概念提出后 [4] , 由于节能环 保、智能可控等优点 , 形成一波新的电致变色技术研究 热点 [5-10] 。随着研究的深入 , 特别是纳米技术的快速 发展 , 器件性能得到了大幅的提升 ( 图 1(a)) [11-13] , 电 致变色器件 (Electrochromic Device, ECD) 也逐渐实现 了产业化应用。 根据材料种类不同 , 电致变色材料可大致分为 有机电致变色材料和无机电致变色材料。相较而言 , 有机电致变色材料具有变色速度快、柔性好、可加 工性强和颜色变化丰富等优点 , 主要包括导电高分 子、紫罗精类小分子和金属有机螯合物等 [14] 。无机 电致变色材料具有光学对比度高、光学记忆性好和 环境稳定性高等优点 , 主要包括过渡金属氧化物以 及普鲁士蓝等 [15] 。目前 , 电致变色器件的结构主要 为类三明治结构 , 由两个透明导电层中间夹一层电 致变色活性层构成。根据电致变色材料种类不同 , 电致变色活性层可分为整体结构和分层结构。整体 结构是电致变色材料与电解质相互混合为一层 , 这 类结构主要针对紫罗精等小分子有机物。这类器件 在外加电场作用下 , 有机小分子扩散到电极表面或 以电解质中氧化还原剂为媒介发生氧化还原反应而 实现颜色变化 [16] 。分层结构是电致变色材料、电解 质和对电极 ( 或叫离子储存层 ) 依靠界面接触分层 ,
电化学储能技术的进步推动了对电池安全性能和小型化的需求,这就需要适用于片上微电池技术的易于加工的聚合物电解质。然而,聚合物电解质的低离子电导率和较差的可图案化能力阻碍了其在微型设备中的应用。在此,我们用锂盐改性聚环氧乙烷(PEO)作为基质材料,得到可图案化的锂离子聚合物电解质。由于高度非晶态和通过混合效应更多的锂离子传输途径以及环氧数量增加,所得样品的离子电导率与50°C下的SU-8样品相比提高了一个数量级,达到2.9×10-4S·cm-1。改性后的 SU-8 具有良好的热稳定性(> 150 °C)、机械性能(弹性模量为 1.52 GPa)以及 4.3 V 的电化学窗口。制造并测试了半电池和微型设备,以验证微型片上电池的可能性。所有这些结果都证明了将片上电池与微电子集成是一种有前途的策略。