摘要 - 放射治疗中心的续录加速器项目,要求在转移线和龙盘中强烈弯曲的磁铁。在设计和制造强烈弯曲,余弦和cosine-theta型磁铁方面已取得了一些进步。本文提出了一种新的计算机辅助功能(CAD)引擎,用于为各种类型的Mandrelsurfaces(椭圆,弯曲,圆锥形)生成线圈几何形状,并与磁场软件以及CAD工具生成。CAD发动机基于FRENET框架的微分几何形状,并允许对曲率参数(例如曲率,扭曲和扭转)进行分析计算。应用可开发表面的理论,可以生成零高斯曲率的导体几何形状,这对于高温超导体磁带等应变敏感的超导管特别有趣。
摘要 - 作为欧洲主要合作的一部分,重点是研究新开发的用于离子治疗的超导磁铁,Istituto Nazionale di Fisica Nucee(INFN)直接通过超导离子Gantry(SIG)项目参与。在离子疗法中,旋转龙门系统对于更好地保存健康组织至关重要,但是它们通常是巨大且沉重的结构:它们的超导版本会导致更轻,更可行的解决方案。SIG旨在与Centro Nazionale di Adroterapia Oncologica(CNAO)和ConseilEuropéenPour LaRecherchéNucléaire(Cern)合作设计,这是430 Mev/U Carbon Ion Gantry的主要超导磁铁。该项目的主要目的是研究该系统的弯曲偶极子:预计它们的曲率为1.65 m,孔径为80 mm,磁场为4 t,坡道速率高达0.4 t/s和NB-TI线圈。SIG的目标是建造30度示威者,以证明这些磁铁的可行性。该计划是设计cosθ磁铁,但我们目前正在制定替代策略,并在块线圈配置中进行横截面。theseparametersareveryChallenging和Thishissolution -CouldMake实现所需目标更容易。在这项工作中,提出了优化的横截面和一种新型的高曲率块线圈磁体的绕组技术。
Willis(CW)的圆圈是一种关键的脑结构,可支持附带血流以维持脑灌注并补偿最终的闭塞。CW内高风险血管的曲折性增加已被视为脑血管疾病进展的标志物,尤其是在颈内动脉(ICA)等结构中。这部分是由于年龄相关的斑块沉积或动脉僵硬。从磁共振(MR)飞行时间(TOF)图像分割的血管的可靠曲折度测量值需要精确的曲率估计,但存在的方法在噪音或稀疏分段数据中遇到困难。我们引入了一种开放源,端到端管道,该管道使用单位速条拟合进行准确的曲率估计,并为ICA提供基于稳健的曲率曲折度指标,并结合了样条拟合质量的指标。我们使用理论数据对此进行测试,并将此方法应用于来自22名参与者的TOF数据。我们表明,即使在噪音限制的高度限制下,我们的指标也能够捕获曲折的曲折,并遭受不同类型的异常动脉卷积。我们发现,我们的ICA曲折度与年龄和超声测量的颈动脉内膜培养基厚度相关。这最终具有重要的翻译意义,能够可靠地产生曲折的曲折和估计脑血管疾病。我们在GitHub存储库中提供开源代码。©
关于宇宙原始状态的复杂性质的有力陈述是由基于一般相对论的经典描述中混乱动力学的通用特征[1,2]做出的。在早期,高阳光宇宙中不断发展的空间各向异性可以通过有效的潜力来描述,该有效潜力通过将各向异性参数限制为有限区域的墙壁编码时空曲率的效率。关于应用于这些墙的台球动力学的数学结果,这些壁恰好是凸面并因此散落,然后保证混乱[3]。量子效应,例如波动或对量子重力的各种几何影响,可能会使这种行为更加违反直觉和更难解开。因此,不可能找到对宇宙初始状态的可靠知识。尤其是,一系列关于超级和弦理论的研究在某种程度上证实了这一期望,表明当包括与统一相关的额外维度和领域时,动态仍然混乱[4,5]。这种新成分通过包括新的独立自由度,扩展了各向异性参数的经典配置空间。尽管如此,它们带来了自己的曲率贡献,这些曲率贡献在有效的各向异性潜力中具有定性特征,从而保持了混乱的动力学。这些模型并不是完全量子,因为它们不考虑具有波动和相关性的状态,并遵守不确定性关系。独立地,量子宇宙学具有波动状态,也已应用于这个问题,但到目前为止,结果混合了[6-9],例如diffi-
脊柱侧弯是脊柱的异常曲率,可能导致许多问题,包括严重的慢性疼痛。虽然脊柱侧弯的确切原因尚未被清楚地鉴定出来,但在脊柱侧弯领域内将干细胞研究和治疗纳入的新数据倡导。脊柱侧弯往往不是致命的慢性疾病,因此在干细胞的研究中尚未将其优先考虑。基于缺乏数据,不能得出任何具体结论,但是发现新的相关性表明干细胞中的故障可能是脊柱侧弯的原因,并且有可能用于纠正脊柱侧弯。扩大了这一点,一项对一个小男孩的研究在植入间充质干细胞时的脊柱曲率有所改善。使用MSC进行脊柱融合时,另一种类型的脊柱侧弯也有所改善。本文旨在比较MSC对引起脊柱侧弯的影响,同时还编译了提出的研究干细胞的研究可以帮助疼痛管理甚至正确的曲率。当前的脊柱侧弯治疗可能会有严重的并发症,并且不能保证它可以纠正脊柱。通过进行了更多研究,分析了干细胞对脊柱侧弯的影响,我们可以希望开始找到创造更有效和道德治疗的原因。
编辑:Hubert Saleur 我们研究在配备 Fubini-Study 度量的 Bloch 球面上连接任意源状态和目标状态的时间最优和时间次优量子哈密顿演化的复杂性。这项研究分多个步骤进行。首先,我们通过路径长度、测地线效率、速度效率和连接源状态和目标状态的相应动态轨迹的曲率系数来描述每个幺正薛定谔量子演化。其次,从经典的概率设置开始,在仅对系统物理有部分了解的情况下,可以使用所谓的信息几何复杂性来描述弯曲统计流形上熵运动的复杂性,然后我们过渡到确定性量子设置。在这种情况下,在提出量子演化的复杂性定义之后,我们提出了量子复杂性长度尺度的概念。具体来说,我们讨论了这两个量的物理意义,即布洛赫球面上指定从源状态到目标状态的量子力学演化的区域的可访问(即部分)和可访问(即全部)参数体积。第三,在计算了两个量子演化的复杂性测量和复杂性长度尺度之后,我们将我们的测量行为与路径长度、测地线效率、速度效率和曲率系数的行为进行比较。我们发现,一般来说,高效的量子演化比低效的演化复杂度要低。然而,我们还观察到复杂性不仅仅是长度。事实上,弯曲程度足够的长路径可以表现出比曲率系数较小的短路径更简单的行为。
- 关键字:几何分析,光谱几何形状,最小表面(allen -cahn方程?),特征值优化 - 教学大纲:在几何分析中无处不在,最小和恒定的平均曲率表面无处不在,作为形状优化问题的解决方案,在奇异性的参数中,作为对自然界中某些微分方程的解决方案。它们的丰富结构部分源于以下事实:它们可以通过许多不同的方式描述:作为微分方程的解决方案,通过其曲率的特征或某些能量功能等等。尽管如此,它们还是难以捉摸的,并且通过给定拓扑为这些表面找到新的结构或存在证明是一个积极的研究领域。在本课程中,我们将从两个角度研究存在之前审查定义和示例。后者是半线性椭圆方程,包括Allen-Cahn方程,Ginzburg-Landau超导性模型以及与仪表理论的紧密相关的Yang-Mills-Higgs方程。
摘要。微泡作为透镜对于光学和光子应用(例如体积显示器、光学谐振器、将光子元件集成到芯片上、高分辨率光谱、光刻和成像)很有吸引力。然而,由于微泡形成的随机性,在硅片等基板上稳定、合理设计和均匀的微泡具有挑战性。我们描述了基于飞秒激光辐照氧化石墨烯制造的弹性微泡,其体积和曲率可精确控制。我们证明石墨烯微泡具有近乎完美的曲率,使其能够用作反射微透镜,将宽带白光聚焦到超高纵横比衍射限制的光子射流中,而不会产生色差。我们的研究结果为将石墨烯微泡集成为用于微型芯片实验室设备的纳米光子元件的透镜以及高分辨率光谱和成像应用提供了途径。
抽象原子干涉仪在过去的三十年中已经开发为研究重力的新功能工具。它们用于测量重力加速度,重力梯度和重力曲率曲率,以确定在显微镜距离处的重力研究,以测试重力在显微镜距离处的重力原理,以测试重力原理,以探测一般性和量化性的量化量和量化性的量化性,以探测量化的量化和量化性的量化性,以探测量化性的量化和量化性的量化性,以量化量化和量化性的量化性,以量化量化性,以量化量化性,以量化量化性和量化性。暗能量,并被提出为观察引力波的新探测器。在这里,我描述了过去和正在进行的实验,对我认为这是该领域的主要前景以及寻找新物理学的潜力。
摘要:为了实现高温下的量子反常霍尔效应(QAHE),采用磁邻近效应(MPE)的方法,破坏拓扑绝缘体(Bi0.3Sb0.7)2Te3(BST)基异质结构中的时间反演对称性,并与具有垂直磁各向异性的亚铁磁绝缘体铕铁石榴石(EuIG)形成异质结构。这里我们证明了大的异常霍尔电阻(R AHE),在 300 K 时超过 8 Ω(ρ AHE 为 3.2 μ Ω · cm),并在 35 个 BST/EuIG 样品中维持到 400 K,超过了 300 K 时 0.28 Ω(ρ AHE 为 0.14 μ Ω · cm)的过去记录。大的 R AHE 归因于 BST 和 EuIG 之间原子突变的富 Fe 界面。重要的是,AHE 环的栅极依赖性随着化学势的变化没有显示出符号变化。这一观察结果得到了我们通过在 BST 上施加梯度塞曼场和接触势进行的第一性原理计算的支持。我们的计算进一步表明,这种异质结构中的 AHE 归因于固有的贝里曲率。此外,对于 EuIG 上的栅极偏置 4 nm BST,在高达 15 K 的负顶栅电压下观察到与 AHE 共存的明显的拓扑霍尔效应(THE 类)特征。通过理论计算的界面调谐,在定制的磁性 TI 基异质结构中实现了拓扑不同的现象。关键词:拓扑绝缘体、磁性绝缘体、异常霍尔效应、磁邻近效应、第一性原理计算、贝里曲率