变分量子算法 (VQA),如量子近似优化算法 (QAOA)、变分量子特征值求解器 (VQE)、量子神经网络 (QNN) 和量子编译 (QC),有望在传统计算机以外的嘈杂中型量子 (NISQ) 设备上解决实际任务 1 。最近的成果证明了其在量子态制备 2 – 6 、量子动态模拟 2 、 7 – 9 和量子计量 10 – 14 方面的有效性。尤其是 QC,引起了人们的极大兴趣。它使用训练过程将信息从未知目标单元转换为可训练的已知单元 15 、 16 。该方法有多种应用,包括门优化 15 、量子辅助编译 16 、连续变量量子学习 17 、量子态层析成像 18 和量子对象模拟 2 。例如,可以准备量子对象(例如量子态),并使用 QC 2 在量子电路中模拟其演化。QC 的性能取决于量子比特的数量和电路深度。可训练量子电路的选择也至关重要,必须仔细选择。一些纠缠
基于得分的扩散模型使用时间转移的扩散过程从未知目标分布中生成样品。这种模型代表了工业应用中的最新方法,例如人造图像产生,但最近注意到,通过考虑具有重尾部特征的注入噪声,可以进一步提高其性能。在这里,我将生成扩散过程的概括性化为一类广泛的非高斯噪声过程。我考虑由标准高斯噪声驱动的前进过程,并以超级强制的泊松跳跃为代表有限的活动莱维过程。生成过程被证明由依赖跳跃幅度分布的广义分数函数控制。概率流ode和SDE配方都是使用基本技术努力得出的,并且用于从多元拉普拉斯分布中得出的跳跃振幅实现。非常重要的是,对于捕获重尾目标分布的问题,尽管没有任何重尾特性,但跳跃延伸拉普拉斯模型的表现就超过了由α-稳定噪声驱动的模型。该框架可以很容易地应用于其他跳跃统计数据,这些统计数据可以进一步改善标准扩散模型的性能。
通过监督学习(RVS)进行的加强学习被称为离线增强学习(RL)的新兴范式。虽然返回条件的RVS(RVS-R)在与离线RL任务有关的广泛数据集中占主导地位,但最近的发现表明,目标条件条件的RVS(RVS-G)优于特定的子最好数据集中的轨迹迹象,其中轨迹插入轨迹可用于实现最新功能性能。但是,这种优势的根本原因仍未得到充分探索。在本文中,采用了教学实验和理论分析,我们揭示了RVS-G在缝线轨迹中的熟练程度源于其在评估过程中概括到未知目标方面的熟练性。在这种见解的基础上,我们引入了一种新颖的RVS-G方法,即空间组成RVS(SC-RVS),以增强其概括为未知目标的能力。此反过来又增强了子最佳数据集上的trajectory缝合性能。具体而言,通过利用优势重量的力量和最大透气正则重量,我们的方法可以与现有的RVS-G方法相比,在行动选择中促进乐观目标采样的促进与维护差异的悲观水平。对D4RL基准测试的广泛实验结果表明,在大多数情况下,我们的SC-RV对基准的表现良好,尤其是在需要轨迹缝线的亚最佳数据集上。
引言:量子假设检验 [1-4] 是量子信息科学基础上最重要的理论领域之一 [5]。在玻色子环境下 [6],一些基本协议包括量子照明 [7-19],旨在在明亮的热噪声条件下更好地检测远程目标的存在,以及量子读取 [20],旨在提高从光学数字存储器中检索数据的速度。这些协议可以建模为量子信道鉴别问题,其中量子资源在检测不同程度的信道损耗方面的表现优于经典策略。在评估量子照明质量时,通常考虑的基本基准之一是使用相干态和零差检测。这被认为是最著名的(半)经典策略,通常用于评估量子资源(例如纠缠)[12,17] 在激光雷达/雷达应用中的优势[21-23]。这种经典策略显然是基于高斯资源(即高斯状态和测量)的,不涉及任何闲散系统。一个悬而未决的问题是确定是否存在另一种基于高斯资源的无闲散策略,其性能严格优于经典策略。在这项工作中,我们肯定地回答了这个问题,展示了使用具有适当优化压缩量的位移压缩状态的优势。对于照射在未知目标上的相同每个模式的平均信号光子数,这种最佳探针能够胜过相干态。虽然这可以在量子照明(即量子激光雷达应用)中得到证明,但在不同的参数范围内,如量子读取的典型情况,这种优势变得更加明显和有用。用于目标检测的优化探针。考虑以二元检验的方式检测目标:零假设
人机界面的操作越来越多地被称为双学习者问题,其中人和界面都基于共享信息独立调整其行为,以提高特定任务的联合性能。从人体机界面领域汲取灵感,我们采取不同的视角,并提出了一个框架,用于研究在界面的演变取决于用户的行为并且不需要明确定义任务目标的情况下的协同适应。我们对协同适应的数学描述建立在以下假设之上:界面和用户代理共同适应以最大化交互效率而不是优化任务性能。这项工作描述了人体机界面的数学框架,其中天真的用户与自适应界面交互。界面被建模为从高维空间(用户输入)到低维反馈的线性映射,充当自适应“工具”,其目标是在无监督学习过程之后最大限度地减少传输损耗,并且不知道用户正在执行的任务。用户被建模为非平稳多元高斯生成过程,该过程产生一系列统计上独立或相关的动作。依赖数据用于建模与实现任务规定的某些未知目标有关的动作选择模块的输出。该框架假设,与此明确目标并行,用户正在隐性学习一种合适但不一定是最佳的与界面交互的方式。隐性学习被建模为使用依赖性学习,由作用于生成分布的基于奖励的机制调节。通过模拟,该工作量化了当用户学习操作静态界面与自适应界面时,系统如何根据学习时间尺度演变。我们表明,可以直接利用这个新框架来轻松模拟各种交互场景,以促进对导致联合系统最佳学习动态的参数的探索,并为人机协同适应优于用户适应提供经验证明。
本文介绍了在Starling地层飞行光学实验(StarFox)期间进行的一群小型航天器群的初始飞行结果。Starfox是NASA Starling Mission上的四个实验之一,该实验由2023年7月推出的四个立方体组成。仅一角方法应用板载摄像机获得的卫星间轴承角度进行导航,增加卫星自主权并实现新的任务概念。尽管如此,先前的飞行演示仅介绍了一个观察者和目标,并依靠Apriori目标轨道知识来初始化,转化操作以解决目标范围以及外部绝对轨道更新以维持收敛。StarFox通过应用仅角度的绝对和相对轨迹测量系统(ARTM)来克服这些局限性,该系统整合了三种新型算法。图像处理使用多种假设方法和域特异性运动学建模来启用并跟踪图像中的多个目标,并计算目标轴承角。批处理轨道确定通过迭代批次最小二乘和弱可观察到的目标范围的采样来计算从轴承角批次的初始群轨道估计。顺序轨道确定利用具有非线性模型的自适应,有效的无气体滤波器,以随着时间的推移来完善群体估计。通过横跨链路共享的多观察者测量值无缝融合以实现可靠的绝对和相对轨道测定。Starfox Flight数据和遥测者提供了卫星群的仅自动角度导航的首次演示,包括多目标和多观察者相对导航;未知目标导航的自主初始化;并同时确定绝对和相对轨道。在有挑战性的测量条件下,单个观察者达到了目标范围的0.5%的相对定位误差,而多个观察者则降低至0.1%。结果表明,关于正在进行的Starfox活动以及仅在未来分布式任务中的纯粹导航的应用方面表现出色。