Loading...
机构名称:
¥ 1.0

基于得分的扩散模型使用时间转移的扩散过程从未知目标分布中生成样品。这种模型代表了工业应用中的最新方法,例如人造图像产生,但最近注意到,通过考虑具有重尾部特征的注入噪声,可以进一步提高其性能。在这里,我将生成扩散过程的概括性化为一类广泛的非高斯噪声过程。我考虑由标准高斯噪声驱动的前进过程,并以超级强制的泊松跳跃为代表有限的活动莱维过程。生成过程被证明由依赖跳跃幅度分布的广义分数函数控制。概率流ode和SDE配方都是使用基本技术努力得出的,并且用于从多元拉普拉斯分布中得出的跳跃振幅实现。非常重要的是,对于捕获重尾目标分布的问题,尽管没有任何重尾特性,但跳跃延伸拉普拉斯模型的表现就超过了由α-稳定噪声驱动的模型。该框架可以很容易地应用于其他跳跃统计数据,这些统计数据可以进一步改善标准扩散模型的性能。

使用跳投的生成建模

使用跳投的生成建模PDF文件第1页

使用跳投的生成建模PDF文件第2页

使用跳投的生成建模PDF文件第3页

使用跳投的生成建模PDF文件第4页

使用跳投的生成建模PDF文件第5页

相关文件推荐

2024 年
¥4.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥8.0
1900 年
¥1.0
2025 年
¥3.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥2.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥8.0