此前,飞机机身结构定义几何形状中连接机翼机身和垂直尾翼机身的凸耳已提交有限元分析 [2-3]。由于快速加速和复杂运动,机翼表面将承受严重载荷 [4]。由于最大弯矩,机翼根部将经历最高的应力集中 [5]。支架用于将机翼连接到机身框架。机翼的弯矩和剪应力通过这些附件传递到机身 [6]。此外,疲劳是指结构部件强度在运行过程中持续下降,在极低的极限应力水平下就会发生故障。这是由于重复载荷作用时间较长。基于静态结构分析,利用应力寿命技术和 Goodman 标准进行的疲劳寿命计算预测几何形状是安全的 [7]。因此,机翼机身凸耳连接结构采用有限元分析和疲劳寿命计算方法进行设计。
– – 英国罗切斯特:商业和军事应用的飞行控制、机上娱乐和平视显示器;电力分配系统、驾驶舱系统、机身系统控制与监控、客舱系统、检测与警报系统以及商业应用的数据分发 – – 华盛顿州雷德蒙德:飞行控制和平视显示器 – – 印第安纳州韦恩堡:商业和军事应用的发动机控制、飞行控制和线束;飞行控制、电力分配系统、驾驶舱系统、机身系统控制与监控、客舱系统、检测与警报系统以及商业应用的数据分发 – – 新加坡:商业应用的飞行控制、电力分配系统、驾驶舱系统、机身系统控制与监控、客舱系统、检测与警报系统以及商业应用的数据分发
加州帕姆代尔公司生产出第 500 个中央机身 诺斯罗普·格鲁曼公司宣布,该公司于 2 月底在其帕姆代尔制造工厂生产出第 500 个 F-35 Lighting II 喷气式战斗机中央机身。这家航空航天和国防承包商表示,此次交付比计划提前。诺斯罗普使用采用机器人和自动化的综合装配线生产机身。机身被送往洛克希德·马丁公司运营的德克萨斯州沃斯堡工厂进行最终组装。 帕姆代尔军用飞机系统部门副总裁兼总经理凯文·米基表示,诺斯罗普为生产军用飞机设定了标准。“我们的团队和供应商一直在寻找更好、更实惠的方式,按时、按成本、提前交付优质产品,就像这款中机身一样,”米奇在一份声明中说道。F-35 是为美国和外国军队开发的最新单座战斗机。该飞机有三个版本 - 美国空军的常规起飞和降落、美国海军的航母起飞和降落以及短距起飞和垂直降落。
对于普通人来说,96 个月的 Embraer Legacy 600 检查看起来很像有组织的混乱 - 有组织是关键词。整齐分类的飞机零件围绕着一个被掏空的机身。机身技术人员在飞机的内部和外部进行检查和测试,寻找需要维修的地方。再加上内部整修、新油漆、Wi-Fi 系统安装,您就会开始明白为什么如此大规模的项目需要花时间来规划和完成。“交付后,这架飞机在很多方面都焕然一新,”项目经理 Tracy Hein 解释道。“这架飞机的每一寸都经过多位专业人员的检查——从机身技术人员到内部安装专家和油漆团队成员。交付前,我们会再次检查,确保飞机离开我们的设施时和第一次飞行时一样完美无缺。”
固定翼 UAV 设计通常相对于纵向平面对称,即机身左侧与右侧对称。目的是使广义气动力对称,以便在任一方向转弯时具有等效机动能力。为了确定给定机身设计的力,工程师通常会收集风洞测试或飞行实验中捕捉力的数据。无论哪种情况,我们都会期望力的大小相等,以对称使用执行器并镜像对称平面上的相对速度。然而,当力和力矩测量设备的坐标轴与机身固定坐标系的坐标轴不对齐时,收集到的数据并非如此(通常情况如此)。这种不对称随后会传递到已识别的模型,并可能对基于模型的控制造成问题,而这正是我们所针对的用例。通过仔细的安装程序可以将错位保持在较小水平,这样就可以通过适当的后处理校准剩余的不对称性。然而,似乎没有一种系统性的校准方法来做到这一点
固定翼 UAV 设计通常相对于纵向平面对称,即机身左侧与右侧对称。目的是使广义气动力对称,以便在任一方向转弯时具有等效机动能力。为了确定给定机身设计的力,工程师通常会收集风洞测试或飞行实验中捕捉力的数据。无论哪种情况,我们都会期望力的大小相等,以对称使用执行器并镜像对称平面上的相对速度。然而,当力和力矩测量设备的坐标轴与机身固定坐标系的坐标轴不对齐时,收集到的数据并非如此(通常情况如此)。这种不对称随后会传递到已识别的模型,并可能对基于模型的控制造成问题,而这正是我们所针对的用例。通过仔细的安装程序可以将错位保持在较小水平,这样就可以通过适当的后处理校准剩余的不对称性。然而,似乎没有一种系统性的校准方法来做到这一点
摘要。本文介绍了如何自动生成具有详细离散化的代表性机身剖面模型,以用于飞机预设计过程链中的计算机辅助瞬态动态模拟。该过程包括 Python 例程,用于从整个机身中选择和缩小剖面,以及细化网格和挤压剖面任意区域的横截面。这样,可以根据模型的个别应用将不同的网格质量集成到模型中。这些功能集成在结构建模和尺寸框架 PANDORA 中。使用简单的增强面板研究其在弯曲载荷条件下具有不同离散化选项的结构行为。此外,使用任一离散化选项增强的机身剖面模型都受到准静态载荷。然后在碰撞条件下模拟模型,以研究其非线性结构行为。本文的重点是详细机身部分在水撞击模拟中的应用和局部结构分析。
图 5. (a) “全局-局部”建模方法,从粘合机身筒模型的全局模型中提取位移场,并为局部模型(W =500 毫米)插入边界条件;(b) 压力差为 ∆P =0.06 MPa(代表客机机身)时,具有三种不同边界条件(BC1、BC2 和 BC3)的全局 FE 模型,颜色轮廓表示在应用边界条件下的位移大小(蓝色表示零位移,红色表示最大位移)
AH-64 Apache 数字孪生、美国陆军航空兵 B-1B Lancer 数字孪生、空军高速导弹应用新兴材料、国防部 F-16 数字孪生、美国空军 F-35 拆解、空军、海军、海军陆战队 FirePoint 联合研发项目:技术开发与转型、美国陆军 AMRDEC KC-135 结构拆解数据管理可视化、空军 M113 数字孪生、陆军 AMC MQ-9 收割者机身耐久性和损伤容限测试、空军 MQ-9 收割者机身静态测试、空军 MQ-4 Triton 机身耐久性和损伤容限测试、海军经济实惠、可持续复合材料建模 (MASC) 研究计划、空军研究实验室多所大学 / 机构研究伙伴关系,旨在开发技术以增强先进材料特性和结构认证,并借助高精度损伤建模和高效协议来证实先进复合结构 - AFRL、ONR、NAVAIR、DURIP、SBIR/STTR 国防原型中心 Skyborg 原型设计、实验和自主开发、空军 UH-60L 黑鹰数字孪生、陆军 AMC