从第 3 阶段获得的关键见解: • QV 被确定为“孤立”的循环经济成熟度(澳大利亚混合用途购物中心的典型特征)。QV 被评为如此是因为其线性废物管理实践,很少关注废物设计(参见背面的表 1)。为便于 Dexus 未来使用,已包含正确材料分类的指南(参见附录中的表 2)。该表应使 Dexus 能够根据材料类型了解材料路径。 • 循环经济的第一原则,即废物和污染设计,在设计决策确定后更难实现,这强调了从一开始就进行循环设计的重要性。因此,大多数循环经济机会都是为了支持循环经济的第二和第三原则而确定的。 • 社区和团结是成功实施已确定的循环机会的关键。
增材制造使复杂结构得以制造。粉末床熔合(PBF)是制造具有高度可控几何形状的复杂结构的代表性AM技术。它涉及选择性激光熔化(SLM)、选择性激光烧结(SLS)和电子束熔化(EBM),具体取决于热源和原材料。材料类型、拓扑类型、几何特征和工艺参数对PBF结构力学性能的影响至关重要。此外,通过拓扑优化获得的大多数声学/光学/机械超材料都可以通过PBF样品实现,相关的设计原理和实施方案。此外,PBF制造的复杂部件的可靠性对于实际应用至关重要,这主要与长期使用性能有关。以上所有内容以及PBF的其他相关内容将是拟议专刊的主题。欢迎为PBF研究提供分析、数值和实验技术的投稿。
简要概述了量子点及其应用。这些伪原子或人造原子提供了广泛的实际应用,因为它们的尺寸、形状和组成都是可调的。对其光学、热学、电子学和传输特性进行理论研究的基本要素是能谱,这可以通过数值方法获得。最简单、最可靠的方法之一是基于有限差分方法的方法。提到了该方法的基本方法。针对不同点尺寸的球形和立方体空间限制,给出了单电子 GaAs 和 InAs 量子点能级的一些结果。发现形状的影响与量子点的半导体材料类型无关。与球形限制相比,立方体限制中的能级更高,这可以解释为由于更高的表面与体积比。此外,还发现 InAs QD 的能量值高于 GaAs QD,这是由于两种不同材料中电子的有效质量不同。关键词:量子点;数值模拟;有限差分方法
○ 例如,某公司估计所售产品含有 40% 重量的生物基碳,则应说明如何根据已知的生产过程输入或公司原材料供应商提供的信息得出 40% 的值。 ● 说明如何利用材料的属性进行 GHG 排放清单计算(例如,对每种材料类型的相关范围 3 类别使用适当的排放因子)。 ● 遵循 SBTi 和 GHG 议定书中针对范围 1、2 和 3 的所有适用 GHG 核算要求(例如,核算生物基材料的全部上游影响,包括土地部门的排放)。 ● 公司不得使用通过账簿和索赔方法生成的、在市场/交易所交易的、和/或从不同公司转移的或从同一公司内的不同站点转移的信用或证书。
默认的 CLIA 法规是针对传统的每日两级外部控制材料测试而制定的。要被视为外部控制材料,控制材料必须具有与患者样本相似的基质,以与患者样本相同的方式处理,并经过分析过程的所有元素(如适用)。它还必须是与用于校准仪器的材料类型或批号不同的材料(42CFR493.1256(d)(9))。功能检查、仪器/电子检查和程序控制不符合外部控制材料的定义。这些类型的检查仅验证电子元件或检测仪器的功能,并且可能仅监控分析过程的一部分。实验室必须仔细评估所使用的控制过程,以确定它们是否控制了整个分析测试过程。
传记G.-M。教授Rignanese是Ecole Polytechnique de Louvain(EPL)的教授和F.R.S.-FNRS的研究主任。他于1994年获得了Catholique de Louvain大学的工程学位和博士学位。在1998年的Catholique de Louvain大学的应用科学中。在博士学位期间,他还曾在PATP(并行应用技术项目),Cray Research与Ecole PolytechniquefédéraledeLausanne(EPFL)的合作中担任软件开发顾问。他在史蒂文·路易(Steven Louie)教授小组的加利福尼亚大学伯克利分校进行了博士后研究。在2003年,他在卢万大学获得了永久职位。在2022年,他被任命为西北(中国)西北理工大学的兼职教授。在2019年,他在电子结构计算领域开发免费的许可软件的原始努力以及在广泛的材料类型中的高通量计算被任命为APS研究员。
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
图书馆自动化是图书馆管理专业的一种新的现代趋势,多年来,它在图书馆和信息中心,尤其是在学术环境中获得了更广泛的接受。Zaid(2004)观看的图书馆自动化是21世纪的现实。它使图书馆变得聪明,并提供了许多改善图书馆顾客服务的机会。ifidon(2000)指出,在一个信息时代,几乎没有任何人类努力领域没有被新的信息和通信技术触及的,自动化将是对大多数读者服务问题的答案。他进一步指出,材料的发行速度将更快地完成,贷款交易的记录不仅将在COM PUTER内存中,而且还可以通过材料类型,借款人的状态和性别来分析它们。Eyitayo(1996)同意,自动图书馆系统在管理中具有巨大的潜力
摘要。航空燃气涡轮发动机的发展在很大程度上需要先进材料的开发。然而,这种复杂的开发过程是合理的,因为它具有系统级优势,如减轻重量、提高温度能力和/或减少冷却,而这些都提高了效率。高温陶瓷在这方面取得了长足的进步,陶瓷基复合材料 (CMC) 处于领先地位。CMC 分为非氧化物和氧化物基。这两类材料类型在高温推进应用中都有很高的潜力。典型的氧化物基材料基于氧化物纤维和氧化物基 (Ox-Ox)。一些最常见的氧化物子类别是氧化铝、氧化铍、二氧化铈和氧化锆陶瓷。这种基体复合材料用于燃气涡轮发动机的燃烧衬套和排气喷嘴等。然而,到目前为止,还没有对可用于此类应用的氧化物基 CMC 进行彻底的研究。本文重点评估了文献调查中可用的氧化物陶瓷基复合材料的机械和热性能。