摘要 在疼痛发生之前,仅仅因为有疼痛威胁,疼痛相关的运动适应就可能被预测性地激活。然而,在人类中,预期疼痛的运动适应背后的神经生理机制仍然知之甚少。我们追踪了健康成年人学会预测上肢单侧肌肉特定疼痛发生时皮质脊髓兴奋性 (CSE) 变化的演变。使用巴甫洛夫威胁条件反射任务,不同的视觉刺激预测了右前臂或左前臂(实验 1)或手(实验 2)的疼痛。在疼痛发生前的刺激呈现期间,在左侧初级运动皮层施加单脉冲经颅磁刺激以探测 CSE 并从目标右前臂和手部肌肉诱发运动诱发电位。还评估了参与者的特质焦虑与 CSE 之间的相关性。结果表明,疼痛威胁会触发皮质脊髓抑制,特别是在预期出现疼痛的肢体中。此外,皮质脊髓抑制相对于受到威胁的肌肉进行调节,前臂疼痛威胁会抑制前臂和手部肌肉,而手部疼痛威胁仅抑制手部肌肉。最后,皮质脊髓抑制越强,焦虑特质就越强。这些结果推进了对疼痛过程的机制理解,表明疼痛相关的运动适应是在仅仅受到疼痛威胁时发生的,作为一系列预期的、拓扑组织的运动变化,这些变化与预期的疼痛有关,并受个人焦虑水平的影响。将这种预期的运动变化纳入疼痛模型可能会带来新的疼痛相关疾病治疗方法。
腹侧被盖区髓鞘可塑性是阿片类药物奖赏的必要条件 Yalçın B、Pomrenze MB、Malacon K、Drexler R、Rogers AE、Shamardani K、Chau IJ、Taylor KR、Ni L、Contreras-Esquivel D、Malenka RC、Monje M. Nature。2024;630(8017):677–685。所有滥用药物都会引起突触传递和神经回路功能的长期变化,而这是物质使用障碍的根本原因。另一种最近被重视的神经回路可塑性机制是通过活动调节的髓鞘变化介导的,这种变化可以调节回路功能并影响认知行为。在这里,我们探讨了髓鞘可塑性在多巴胺能回路和奖赏学习中的作用。我们证明多巴胺能神经元活动调节的髓鞘可塑性是多巴胺能回路功能和阿片类药物奖赏的关键调节器。少突胶质细胞谱系细胞对由光遗传学刺激多巴胺能神经元、光遗传学抑制 GABA 能神经元或施用吗啡引起的多巴胺能神经元活动有反应。这些少突胶质细胞变化选择性地出现在腹侧被盖区内,但不出现在内侧前脑束的轴突投射上,也不出现在目标伏隔核内。少突胶质细胞发生的遗传阻断会抑制伏隔核中的多巴胺释放动力学,并削弱对吗啡的行为条件反射。总之,这些发现强调了少突胶质细胞在阿片类药物奖励所需的奖励学习和修改中发挥的关键作用。
脑机接口使神经科学家能够将特定的神经活动模式与特定的行为联系起来。因此,除了目前的临床应用外,脑机接口还可用作研究大脑学习和可塑性的神经机制的工具。数十年来使用此类脑机接口的研究表明,动物(非人类灵长类动物和啮齿动物)可以通过操作条件反射自我调节大脑各种运动相关结构的神经活动。在这里,我们要问的是,人类大脑是一个由超过 800 亿个神经元组成的复杂互连结构,它能否学会在最基本的层面——单个神经元——上自我控制。我们利用这个独特的机会记录了 11 名癫痫患者的单个单元,以探索边缘系统和其他与记忆相关的大脑结构中单个(直接)神经元的发放率是否可以受到意志控制。为此,我们开发了一个视觉神经反馈任务,训练参与者通过调节他们大脑中任意选择的神经元的活动来移动屏幕上的方块。值得注意的是,参与者能够有意识地调节这些以前未经研究的结构中的直接神经元的发放率。我们发现一部分参与者(学习者)能够在一次训练课程中提高他们的表现。成功的学习的特点是:(i)直接神经元的高度特异性调节(表现为发放率和爆发频率显著增加);(ii)直接神经元的活动与邻近神经元的活动同时去关联;(iii)直接神经元与局部 alpha/beta 频率振荡的稳健锁相,这可能为促进这种学习的潜在神经机制提供一些见解。记忆结构中神经元活动的意志控制可能为探索人类记忆的功能和可塑性提供新方法,而无需外部刺激。此外,这些大脑区域神经活动的自我调节可能为开发新型神经假体提供途径,用于治疗通常与这些大脑结构中的病理活动相关的神经系统疾病,例如药物难治性癫痫。
通过传播光子耦合孤立量子系统是量子科学的中心主题 1、2,具有实现分布式容错量子计算 3 – 5 等突破性应用的潜力。到目前为止,光子已被广泛用于实现高保真远程纠缠 6 – 12 和状态转移 13 – 15,方法是用条件反射补偿效率低下,这是一种限制通信速率的概率性策略。与此相反,我们在这里通过实验实现了一个长期存在的确定性直接量子态转移的提议 16。利用高效的、参数控制的微波光子发射和吸收,我们展示了两个孤立超导腔量子存储器之间按需的高保真状态转移和纠缠。传输速率比任一存储器中光子的丢失速率更快,这是复杂网络的基本要求。通过以多光子编码传输状态,我们进一步表明,使用腔体存储器和状态独立传输创造了惊人的机会,可以通过量子误差校正确定性地减轻传输损耗。我们的研究结果为跨网络的确定性量子通信建立了一种引人注目的方法,并将实现超导量子电路的模块化扩展。直接量子态转移是一种快速、确定性的量子通信方案,用于在量子网络中传播光子 16 。在该协议中,发送节点以成形的光子波包形式发射量子态,然后被接收节点吸收。这需要光和物质之间强大的可调耦合,以及在共享通信频率上高效传输光子;到目前为止,由于光子耦合和传输效率低下,光网络中的状态转移具有高度概率性 8 。相比之下,超导微波电路可以将低损耗与强耦合相结合。该平台非常适合实现按需状态转移,从而以模块化方式扩展量子设备。为此,超导微波存储器和传播模式已成功对接,独立实现受控光子发射 17 – 20 和吸收 21 – 23。然而,由于高效、频率匹配的光子传输需求带来的困难,远距离确定性量子通信的目标至今仍未实现。
研究人员对小鼠大脑中既能接收来自 rACC 的神经元投射,又能在预期镇痛期间表现出神经活动的区域进行了分析。为此,他们使用了一种名为“活跃群体靶向重组”(TRAP)的基因技术来识别 Fos 基因的表达,该基因的表达发生在神经元活跃之后。他们确定了三个大脑区域:纹状体、丘脑和丘脑底核,以及令研究人员惊讶的是,脑干中还有一对名为桥脑核(Pn)的结构。通过钙成像(检查清醒行为小鼠的神经元活动)、电生理学(记录脑切片中的神经元放电)和使用光控蛋白对 rACC-to-Pn 回路进行人工“光遗传学”激活和抑制,确定了安慰剂中 rACC-to-Pn 通路的因果作用。研究人员还利用单细胞 RNA 测序方法来观察基因表达,并表明相关的 Pn 神经元具有兴奋性并表达编码 δ-阿片受体的基因,支持安慰剂镇痛确实是由阿片类药物介导的想法。 Pn 充当大脑皮层和小脑之间的联络人。尽管已经观察到 Pn 被疼痛激活 8 ,但它们并未被认为是通常对疼痛作出反应和处理疼痛的大脑区域网络的一部分 - 称为疼痛基质。因为小脑是 Pn 神经元的主要目标,并且因为一位坚持不懈的审稿人推动了这项工作,作者接下来检查了在经历镇痛预期的小鼠中小脑皮层主要神经元 - 浦肯野细胞的活动。陈等人。确定了一组编码疼痛缓解预期的特定浦肯野细胞,并发现该细胞群的活动由 rACC-to-Pn 回路驱动(图 1b)。这并不是安慰剂镇痛的第一个动物模型;也不是第一次使用条件反射来研究疼痛 9 。但 Chen 等人无疑已经提供了迄今为止最深入的安慰剂镇痛神经解释,他们使用了目前可用于定义小鼠神经回路的所有现代高分辨率技术。安慰剂效应及其邪恶双胞胎“反安慰剂”(即个体对治疗的负面预期导致其症状恶化)对于此类解释都非常重要,因为它们在疾病和治疗的中介中普遍存在且非常强大。值得注意的是,安慰剂效应在人类中可能比在小鼠中更复杂,因为在人类中,除了条件反射之外,它还涉及基于口头指导和伴随的社会影响的期望。这里真正有趣的发现是,在所有可能的大脑区域中,Pn 和小脑负责产生期望,这一概念可能被假设
心理意象与神经调节技术的结合在临床神经科学转化研究领域引起了越来越多的关注(Skottnik and Linden,2019)。神经反馈是一种神经调节技术,通过“实时”呈现正在进行的大脑活动的表现形式,对特定的大脑区域或网络进行自我调节,即向参与者提供信息以实现心理意象自适应策略(Megumi 等人,2015 年;Sitaram 等人,2016 年;De Vico Fallani 和 Bassett,2019 年;Pamplona 等人,2020 年)。尽管最近广泛使用实时功能性磁共振成像 (rt-fMRI) 神经反馈,但服务于其认知成分和临床影响的潜在神经机制仍然是持续争论的主题(Kadosh and Staunton,2019 年;Paret 等人,2019 年)。学习控制大脑活动通常与识别个性化心理策略有关(Paret 等人,2018 年)。强化学习和操作性条件反射理论已被讨论为神经反馈机制的模型(Paret 等人,2018 年;Shibata 等人,2019 年),因为目标神经模式和正向奖励的重复配对会增强区域可塑性(Richards 等人,2019 年)。在最近的一项荟萃分析中,Emmert 等人(2016 年)研究了神经反馈中涉及的各种神经网络。作者描述了一个复杂的结构,很可能反映了不同的认知过程,包括奖励处理和决策(Haber 和 Knutson,2010 年)。这些过程包括不同网络的参与,例如在认知要求高的任务、心理策略的准备和执行中激活的中央执行网络,以及与注意力控制和监控相关的显着网络(Sridharan 等人,2008 年;Eckert 等人,2009 年)。区分与神经反馈训练相关的特定神经特征的研究已经强调了几个皮质和皮质下结构,特别是关键的纹状体亚区域。更强的腹侧纹状体激活与训练成功相关(Johnston 等人,2010 年)。最近的证据表明,在神经反馈训练期间,认知、非任务特定的控制区域网络以及与奖励和反馈监控有关的区域持续被激活(Skottnik 等人,2019 年)。无论任务如何,特定大脑区域的意志调节都伴随着纹状体内激活的增加。总之,这些发现表明奖励网络,特别是纹状体,在神经反馈训练中起着核心作用。
语言习得是指个人获得语言技能的过程,包括母语和第二语言。语言学习理论的发展经历了从环境主义到建构主义再到先天主义的钟摆式转变,研究人员一直在争论认知过程是受到先天机制的制约还是受环境输入的影响。诺姆·乔姆斯基和埃里克·伦内伯格等著名语言学家主张限制和促进语言学习的先天能力,而凯瑟琳·斯诺、伊丽莎白·贝茨和布赖恩·麦克维尼等其他人则提出了不同的观点。母语 (L1) 习得一直是语言学家和心理语言学家研究的重要领域。对 L1 习得的研究导致了语言间理论的出现,而语言间理论又影响了第二语言习得 (SLA) 研究。本文探讨了三种为 L1 习得带来新思想的理论:行为主义、心理主义和社会互动理论。从 L1 习得理论到语言间理论的转变引发了对 SLA 研究的进一步研究。 Mohammad Torikul Islam 的 2013 年会议论文《第一语言习得理论和向 SLA 过渡》全面概述了语言学习理论的发展及其对 SLA 研究的影响。该论文是 ACLL2013 会议论文集的一部分,可通过提供的链接访问。母语习得的研究有多种理论和方法。本文将探讨三种基本理论:斯金纳的言语行为、乔姆斯基的先天结构和皮亚杰的认知方法。这些理论将在其历史背景下呈现,突出其优缺点。语言习得理论解释语言学和心理学的研究表明,语言习得会受到学习和认知能力的限制。研究表明,在学校课程的早期引入第二语言可以提高成功率,而错误往往源于第一语言的干扰。失语症患者的自我记录、动物行为和非语言表现表明了语言习得的一个共同方面:从流利的语音中分割出单词。研究表明,年仅 8 个月大的婴儿就可以利用相邻语音之间的统计关系完成这项任务。语言的发展是一个涉及多个大脑区域的复杂过程。语言习得理论提出,大脑会发展出处理和理解语言的独特能力,使人类有别于其他物种。神经认知研究的最新发现为我们的大脑如何发展第二语言或手语提供了见解。人工智能在语言发展中的作用仍然是一个持续研究的领域。为了支持儿童的语言习得,父母可以提供一个培养沟通和互动的养育环境。语言习得:理论和争论的历史除了母语之外,学习一门额外语言的过程一直是几个世纪以来哲学家、学者和研究人员感兴趣的话题。每个概念都有自己的基本理论,试图解释人类如何习得语言。从历史上看,语言习得的研究始于古代哲学家,他们使用“扶手椅心理学”来理解人类的认知。他们认为语言是一种与生俱来的天赋,柏拉图对词义映射的观点就是明证。然而,研究梵语的学者们争论了几个世纪,这种能力是世代相传的还是天生就有的。后来,哲学家约翰·洛克和托马斯·霍布斯提出,包括语言在内的知识源于抽象的感觉印象。这个想法表明语言起源于感官体验。行为主义者,如 BF 斯金纳,认为语言是通过操作性条件反射学习的,即个人将特定行为与奖励和惩罚联系起来的过程。例如,儿童通过成功的条件反射反复将单词或声音与概念或想法联系起来,学会区分单词或声音。这个概念的例子是,一个孩子在学习他们的家养动物 Whiskers 和 Fido 时,他们会对父母关于它们各自物种的陈述做出纠正性反应。值得注意的是,著名语言学家诺姆乔姆斯基批评了斯金纳的理论,他认为孩子经常无视父母的纠正,可能无法准确地学习单词或短语的正确用法。相反,乔姆斯基提出了一种基于句法研究的更数学的语言发展方法。本土主义理论认为,人类生来就具有学习语言的先天遗传能力,这种能力由一种称为语言习得装置 (LAD) 的假设装置促进。该理论认为,诺姆·乔姆斯基提出的概念“普遍语法”是我们基因构成的固有部分,并且适用于所有语言。根据该理论,人类具有天生的语言习得能力,这使我们能够以惊人的速度学习复杂的交流模式。相反,社会文化理论将语言习得视为一种社会过程,它源于与环境和其他个体的互动。该理论认为,儿童主要通过交流的愿望来学习语言,而他们的环境在塑造他们的语言能力方面起着重要作用。例如,单亲家庭抚养的婴儿可能会比其他人更早地形成独特的单词或短语。学习理论将语言习得视为一种可以通过重复、强化和纠正获得的技能。成年人经常表扬和纠正孩子的说话尝试,目的是提高他们的语言技能。然而,该理论缺乏对新短语和单词如何形成的清晰解释,因为它主要关注模仿和重复。儿童生命的早期对于语言发展至关重要。在 10-18 个月之间,他们会说出第一句话,到两岁时,就会出现像“请给我水”这样的简单短语。研究表明,18 个月大的孩子可以区分正确和不正确的动词组合,例如“正在跳”和“将跳”。当孩子长到 4 到 7 岁时,他们开始讲连贯的故事。语言习得理论提出了语言习得的五个阶段,第一阶段是沉默期,在此期间,儿童可能学会多达 500 个单词,但无法说出任何口语。有些孩子模仿成人的讲话,但这还不是真正的语言产生。第二阶段可以持续六个月,在此期间,儿童的词汇量达到约 1,000 个单词并开始使用短语。进入第三阶段后,他们的词汇量会增加到 3,000 个单词,能够说简单的句子和正确的故事。到第四阶段,孩子们大约有 6,000 个活跃单词,并开始构建复杂的句子,表达基本的想法和观点。英语作为第二语言的学习者在这个阶段可以使用母语策略。掌握第二语言可能需要四到十年才能流利。法国神经学家皮埃尔保罗布罗卡发现了大脑中一个负责语言处理、言语产生、理解和面部功能的区域,现在被称为布罗卡区。该区域受损会导致语言问题,例如布罗卡失语症。布罗卡是第一个将大脑左半球与语言联系起来的人,除了 30% 的左撇子和 10% 的右撇子外,大多数人都控制着语言。布罗卡区后面是三角部,它参与语义处理,帮助我们理解复杂的句子。德国神经学家卡尔·韦尼克 (Carl Wernicke) 发现了布罗卡区对应的区域,即现在的韦尼克区,该区域负责接受性语言,并与认知到言语、写作到阅读以及言语到理解相关。诺曼·格施温德 (Norman Geschwind) 发现,下顶叶在语言处理、发展和习得中起着至关重要的作用。该区域帮助我们理解书面和口头的单词、短语和想法,以及对感官信息进行分类和排序。额叶内的梭状回有助于对单词进行分类和识别。语言习得理论强调在学习第二语言时发展意义的重要性。意义的类型包括语法、语义、词汇和语用,所有这些都是掌握第二语言所必需的。手语习得有其独特的特点,但与口语习得并没有太大的不同。出生在手语家庭的孩子由于周围环境和家庭支持,更容易学习手语。父母与孩子使用手语有助于自然习得这种语言。听力和听力障碍儿童都从手势和身体符号开始,尽管听力障碍儿童比听力障碍儿童更早表现出这些技能。研究表明,聋哑儿童在 7-10 个月大时开始进行手动音节咿呀学语,这是一种独特的活动,有自己的语音单位、音节组织和无意义。语言习得及其对大脑发育的影响已被广泛研究,揭示了早期语言接触对儿童认知成长和整体健康的重要性。谷歌的研究人员在他们的翻译网络中发现了一种独特的中间语言,展示了人类语言的复杂进化。Facebook 的人工智能在 2017 年通过训练聊天机器人参与使用英语文本对话的交易游戏创造了自己的语言。聊天机器人开发了一种改良版的英语,以便更有效地解决任务,但经常使用无意义的短语。研究一直表明,双语对大脑有益,可以降低患阿尔茨海默病等神经退行性疾病的风险。幼儿在关键的成长时期表现出更好的语言发展技能,这是因为他们的大脑具有可塑性。音素意识在早期语言发展中起着至关重要的作用,婴儿对语音刺激的大脑反应可以预测未来的阅读和口语能力。成年后学习第二语言的人仍然可以从认知功能的改善中受益,尽管速度较慢。学习第二语言后保持母语与非正式使用和教育水平有关。有趣的是,音乐被发现对不同年龄组的语言发展有显著贡献,因为它融合了口语、写作和节奏。在拥有多种母语的国家开展的研究表明,多语言人士更有能力对抗阿尔茨海默病等神经退行性疾病。此外,通过早期接触语音刺激和语言环境,可以缓解学习多种语言的儿童说话延迟的问题。如果您的孩子正在努力学习他们的第一语言或难以学习第二语言,请不要担心 - 语言病理学家可以帮助识别和解决潜在的认知问题。从出生开始给婴儿读书也非常有益,因为研究表明他们甚至在子宫里就能学会单词!从简单的图画书开始,描述每页上发生的事情,以帮助您的小宝贝发展他们的语言技能。与他们交谈同样重要 - 讲述您的日常活动,例如“我们正在做通心粉和奶酪作为晚餐”,并让他们参与对话以促进语言发展。您甚至可以在他们还在子宫里时就为他们学习第二语言做准备!一起讲故事和唱歌也是提高词汇量和学习热情的好方法。虽然这很诱人,但尽量不要花太多时间看屏幕 - 而是将看电视的时间限制为短时间,并观看外语动画片。考虑使用 Cognifit 等程序来提高他们的语言技能。去博物馆、水族馆或动物园等有趣的地方进行实地考察也可以帮助他们学习和探索周围的世界。不要忘记在评论中分享您对语言习得理论的看法!