解答:第一个不等式。由于对于所有 x ,p ( x ) ≤ 1,因此有 log( x ) ≤ 0,这意味着当 p ( x ) ≥ 0 时,0 ≤ H ( X )。如果存在 x ∈ X 且 p ( x ) = 1,则有等式,因为意味着 H ( X ) = 0。相反的方向是由于 H ( X ) 是凹的,概率分布集是凸的,因此它在极值点处取最小值,对于一个 x ∈ X ,p ( x ) = 1。第二个不等式。第二个不等式可以使用拉格朗日乘数来证明。具体来说,如果所有 px := p ( x ) > 0,我们可以计算梯度 (grad H ( X )) px = − log( px ) − 1。结合限制 P
项目名称 理学学士 – 人工智能与机器学习 课程代码/名称 UGAM101 / 线性代数与微积分 年份/学期 I / ILTPC 3 1 0 4 课程目标: 1. 用矩阵方法解释线性方程组的解。 2. 讨论级数的收敛和发散。 3. 解释二元函数的偏导数和极值 4. 讨论标量和矢量函数的物理解释 5. 讨论矢量线、曲面和体积积分。 课程成果: 成功完成课程后,学生将能够: 1. 应用矩阵方法解线性方程组 2. 测试无限级数的收敛和发散。 3. 确定二元函数的极值。 4. 将向量微分算子应用于标量和向量函数 5. 用格林函数求解线、表面和体积积分,UNIT-I 矩阵 12 矩阵的秩、梯形、线性方程组的一致性、向量的线性依赖性、特征值、特征向量、特征值的性质、凯莱-哈密顿定理、二次型、通过线性变换将二次型简化为标准形式、二次型的性质。UNIT-II 无穷级数 12 数列和级数收敛的定义。正项级数 – 收敛的必要条件、比较检验、极限形式比较检验、达朗贝尔比率检验、拉贝检验、柯西根检验、交错级数、莱布尼茨规则、绝对和条件收敛。 UNIT-III 偏微分及其应用 12 两个或多个变量的函数,偏导数,高阶偏导数,全导数,隐函数的微分,雅可比矩阵,两个变量函数的泰勒展开式,两个变量函数的最大值和最小值。 UNIT-IV 向量微分学 12 标量和向量点函数,向量算子 Del,梯度,方向导数,散度,旋度,Del 两次应用于点函数,Del 应用于点乘积
在本文中,我们将证明宇宙学与普朗克尺度之间存在联系。近年来,人们已经证明,普朗克长度可以独立于 G 、¯ h 和 c 确定,而且一系列宇宙学预测可以仅从两个常数(即普朗克长度和引力速度)推导出来。引力速度可以很容易地在不知道光速的情况下确定 [ 1 , 2 ]。这为宇宙学提供了一个新的视角,并证明了普朗克尺度与宇宙学之间存在联系。这与最近将广义相对论与康普顿频率和普朗克尺度联系起来的广义相对论量化理论完全一致。我们研究了弗里德曼宇宙学和最近基于 Reissner-Nordstrom、Kerr 和 Kerr-Newman 度量的极值解引入的宇宙学。1
增强了极端热量,这是温度时间序列[1]的创纪录高数,损害人类健康,福利和基础设施的损害以及生态系统[2,3]。热量的影响随温度和其他热量指数非线性增加[4]。因此,重要的是要准确预测有关当前天气动态和持续气候变化的信息的极端风险[5]。通常,极端温度是使用统计极端价值理论建模的,该理论可以渐近地描述最极端值的分布,这是从任何广泛的概率分布中提取的足够大数量集中的分布[6]。通常通过使用电台观测值或天气和气候模型输出的年度最高温度(表示为TXX [7])的时间序列来实现这一目标。基于极值理论,假定TXX值是从广义极值分布(GEVD)[8]中生成的。使用最大似然或其他合适的方法从TXX数据估算GEVD参数后,可以估计温度超过任何指定阈值的可能性[9-12]。为了说明气候变化的影响,GEVD通常被认为是非平稳的,其位置参数将其模型为全球平均温度的线性函数,并且可能是其他协变量[13]。极端温度已使用类似的归因研究方法进行了建模,该方法旨在量化观察到的最近的热波的风险的人为升高[14-17]。由世界天气归因协作开发的此类归因研究的标准方法是估计of of of of of of of temere热量的可能性,假设TXX或其他基于温度的时间序列遵循GEVD,将位置参数作为全球平均温度的线性函数。将这种概率与从同一统计模型中得出的概率进行比较,当时全球平均温度设置为工业化前基线,而人为变暖增加了因素(概率比),从而增加了观察到极端的可能性[18,19]。
累积的水)以毫米(mm)为单位。 因此,有非常广泛的文献提出了用于在不同时间尺度(小时,每小时,每日,每月)下降水分布的模型。 例如,用于建模正降水的最流行的分布可能是伽马分布[79],由于其灵活的形状,它通常也提供适合每月降水量的足够适合,但是伽马分布无法在高时间尺度上捕获大降雨特征,即累积的水)以毫米(mm)为单位。因此,有非常广泛的文献提出了用于在不同时间尺度(小时,每小时,每日,每月)下降水分布的模型。例如,用于建模正降水的最流行的分布可能是伽马分布[79],由于其灵活的形状,它通常也提供适合每月降水量的足够适合,但是伽马分布无法在高时间尺度上捕获大降雨特征,即每天和每日。建模降水及其聚集体提出了与其他天气变量(例如温度)相比的独特挑战。精确地捕获随着时间或空间的降水的聚集行为对于许多应用至关重要,包括洪水或干旱风险评估。这需要对适当的依赖模型进行典范或隐式规范,以在时空中结合边缘分布,在时间和空间中,不仅极端,而且中度和低降水值都会有助于极端聚集体。特定于降水的另一个方面是其间歇性,这意味着当考虑完整的观察序列时,可以观察到许多零值。这需要将概率分布视为阳性降水的连续成分的混合物,而在没有沉淀的情况下以零为零成分。虽然整个分布对于降水很重要,但它的极端尤其引起了人们的关注,因为它们通过雨水引起的洪水对人们的影响[38],农业[99]和基础设施[85]。对局部极端的研究是极值分析[50,55]的重要早期应用,也是许多方法论发展的催化剂。的确,如果模型未正确指定,则将参数模型用于整个分布可能会导致尾部分位数估计值的显着偏差。因此,使用源自极值理论的模型来估计降水的尾矿[24,8,33]已成为普遍做法。本章回顾了用于研究极端降水的某些关键方面的统计方法,但没有任何声称是详尽的。第1.2节简要概述了典型的数据特征。第1.3节提出了单变量的概率分布,用于在极值和估计其参数的方法中建模可变性。然后,第1.4节演示了这些分布在代表不同持续时间和频率下的预提取强度或返回值时的应用。第1.5节说明了如何在空间上汇总信息以获得更有效的回报率估计值。上述部分中的方法假设极端降水事件是独立的,并且分布相同。但是,有多种原因认为事实并非如此。例如,季节性和空间模式以及气候变化可能引起非组织性。第1.6节回顾了各种检测和建模非组织降水极端的方法。最后一节是一个讨论,介绍了随机发生器的概念,并阐述了为模拟目的建模极端降雨的重要性。
本文讨论了脑机接口 (BCI) 中脑电图 (EEG) 信号中 μ 抑制的检测。为此,提出了一种基于统计模型和线性分类器的有效算法。确切地说,提出了广义极值分布 (GEV) 来表示中枢运动皮层 EEG 信号的功率谱密度。使用最大似然法估计相关的三个参数。基于这些参数,设计了一个简单而有效的线性分类器来对三类事件进行分类:想象、运动和静息。初步结果表明,所提出的统计模型可用于精确检测 μ 抑制并区分不同的 EEG 事件,具有非常好的分类精度。
方法在 PdM 中也得到了广泛应用。由于备件管理是行业中的一个关键问题,Khan 等人(2019 年)[16] 部署了一个数学规划模型来制定船舶的故障时间,以基于传感器数据优化备件管理。同时,部署最短路径动态规划公式来解决多项式时间复杂度。Cox 比例风险模型是可靠性分析中一种流行的模型,可以处理删失数据和未删失数据。Verhagen 和 Boer(2018 年)[17] 使用时间独立和时间相关的 Cox 比例风险模型根据历史运行和维护数据估计飞机部件的可靠性。此外,采用极值分析和最大差异分析来识别与部件故障相关的操作因素。
信息图被用来讨论两种不同信息测度之间的关系,如冯·诺依曼熵与误差概率[1],或冯·诺依曼熵与线性熵[2]。对于线性(L)熵和冯·诺依曼(S)熵,通常对任何有效的概率分布ρ绘制(L(ρ),S(ρ))图。这里,ρ也可以表示量子系统的密度矩阵(或者更确切地说是具有其特征值的向量),这也是本文的主要兴趣所在。我们特别关注由此产生的信息图区域的边界,其中相关的概率分布(或密度矩阵)将被表示为“极值”。在参考文献[3]中,对两个量子比特的熵进行了比较(有关离子-激光相互作用的情况,另见[4])。在 [5] 中,对任意熵对的信息图进行了详细研究。文中证明了,对于某些条件(线性、冯·诺依曼和雷尼熵满足),极值密度矩阵始终相同。文中给出了反例,但一般来说,偏差会非常小,并且可以安全地假设这些极值密度矩阵具有普适性。在本文中,我们将使用信息图来获取对称多量子系统中粒子纠缠的全局定性信息,该系统由广义“薛定谔猫”(多组分 DCAT)态(在 [6] 中首次引入,作为振荡器的双组分偶态和奇态)描述。这些 DCAT 态原来是 U(D)自旋相干(准经典)态的 ZD−12 宇称改编,它们具有弱重叠(宏观可区分)相干波包的量子叠加结构,具有有趣的量子特性。为此,我们使用一和二量子Dit 约化密度矩阵 (RDM),它是通过从由 cat 态描述的 N 个相同量子Dit 的复合系统中提取一两个粒子/原子,并追踪剩余系统获得的。众所周知(见 [3] 及其参考文献),这些 RDM 的熵提供了有关系统纠缠的信息。我们将绘制与这些 RDM 相关的信息图,并提取有关一和二量子Dit 纠缠的定性信息,以及相应 RDM 的秩,这也提供了有关原始系统纠缠的信息 [7]。我们将应用这些结果来表征 3 级全同原子 Lipkin–Meshkov–Glick 模型中发生的量子相变 (QPT),以补充 [ 8 ] 的结果。具体来说,我们已经看到,一和二量子 DIT RDM 的秩可以被视为检测 QPT 存在的离散序参量前体。本文结构如下。第 2 节回顾了信息图的概念,描述其主要属性,特别是关于秩的属性。第 3 节回顾了 U(D) 自旋相干态的概念及其 ZD−12 宇称适配版本 DCAT。在第 4 节中,我们计算了 2CAT 和 3CAT 的一和二量子 Dit RDM、它们的线性熵和冯诺依曼熵,绘制了它们并构建了相关的信息图。在第 5 节中,我们使用信息图提供有关 Lipkin–Meshkov–Glick (LMG) 模型中 QPT 的定性信息。第 6 节致力于结论。
本报告回顾了通过 AdS/CFT 对偶的视角理解黑洞动力学和解决黑洞信息悖论的最新进展。从黑洞蒸发和信息的考虑介绍了悖论的起源。回顾了 AdS/CFT 对偶的主要原理,其动机是弦理论中对偶的起源以及 AdS 时空中的标量动力学。应用 AdS/CFT 对偶的全息原理将非引力量子理论转化为高维引力理论,计算蒸发黑洞的霍金辐射的纠缠熵以显示是否遵循幺正佩奇曲线。最后,利用对量子极值曲面演化的最新见解来测试 AdS 2 中的黑洞辐射系统是否遵循幺正性。