增强了极端热量,这是温度时间序列[1]的创纪录高数,损害人类健康,福利和基础设施的损害以及生态系统[2,3]。热量的影响随温度和其他热量指数非线性增加[4]。因此,重要的是要准确预测有关当前天气动态和持续气候变化的信息的极端风险[5]。通常,极端温度是使用统计极端价值理论建模的,该理论可以渐近地描述最极端值的分布,这是从任何广泛的概率分布中提取的足够大数量集中的分布[6]。通常通过使用电台观测值或天气和气候模型输出的年度最高温度(表示为TXX [7])的时间序列来实现这一目标。基于极值理论,假定TXX值是从广义极值分布(GEVD)[8]中生成的。使用最大似然或其他合适的方法从TXX数据估算GEVD参数后,可以估计温度超过任何指定阈值的可能性[9-12]。为了说明气候变化的影响,GEVD通常被认为是非平稳的,其位置参数将其模型为全球平均温度的线性函数,并且可能是其他协变量[13]。极端温度已使用类似的归因研究方法进行了建模,该方法旨在量化观察到的最近的热波的风险的人为升高[14-17]。由世界天气归因协作开发的此类归因研究的标准方法是估计of of of of of of of temere热量的可能性,假设TXX或其他基于温度的时间序列遵循GEVD,将位置参数作为全球平均温度的线性函数。将这种概率与从同一统计模型中得出的概率进行比较,当时全球平均温度设置为工业化前基线,而人为变暖增加了因素(概率比),从而增加了观察到极端的可能性[18,19]。
主要关键词