人工智能支持的数据分析可提高学生的积极性并减轻物理教育中的压力 Jannik Henze 1 、André Bresges 1、Sebastian Becker-Genschow 2 1 科隆大学物理教育研究所,50931 科隆,德国 2 科隆大学数字教育研究中心,50931 科隆,德国 摘要。人工智能 (AI) 融入物理教育,为数据分析和概念学习带来了新方法。对人工智能支持的方法和传统的基于 Excel 的方法进行比较分析,发现在促进对摆锤实验的理解方面,它们各有优势和局限性。本研究探讨了人工智能辅助工具(例如基于 ChatGPT 的自定义聊天机器人)与传统基于 Excel 的方法在物理教育中的整合,结果表明,虽然两种方法都能产生相当的定量学习收益,但人工智能工具具有显著的质量优势。这些包括增强情感参与度和提高积极性,凸显了人工智能创造更积极、更支持性学习环境的潜力。自适应人工智能技术在支持结构化、数据密集型任务方面具有重要前景,强调了将其与教育实践进行深思熟虑、平衡整合的必要性。
在RESTSTRAHLEN区域,横向和纵向声子频率之间,极性介电材料对光线响应,而所得的强光 - 分子相互作用会导致形成称为表面声子极化子的混合型准颗粒。最近的工作表明,当光学系统包含纳米级极元素时,这些激发可以作为晶格的材料分散剂的结果,从而获得纵向场成分,从而导致形成了被称为纵向横向极化子的次级准粒子。在这项工作中,我们建立在以前的宏观电磁理论的基础上,开发了完整的纵向透明偏振子的第二次量化理论。从光 - 一种系统的哈密顿量开始,我们将失真对待晶格,引入弹性自由能。然后,我们将哈密顿量对角线化,表明偏振子的运动方程相当于宏观电磁作用,并量化了非局部运算符。最后,我们演示了如何根据极化状态重建电磁场并探索北极星诱导的Purcell因子的增强。这些结果证明了非局部性如何狭窄,增强和频谱调整近场发射,并在中红外传感中应用。
肽聚糖(PG)是一种网状结构,是细菌细胞壁的主要成分,对于维持细胞完整性和形状至关重要。大多数细菌依靠青霉素结合蛋白(PBP)进行交联,但某些物种也采用LD-转肽酶(LDTS)。与PBP不同,LDT的本质和生物学功能在很大程度上不清楚。以其极性生长而闻名的字母细菌的杂种菌序,其PG异常富含LD-Crosslinks,这表明LDT在这些细菌中可能在PG合成中起更重要的作用。在这里,我们研究了植物病原体农杆菌tumefaciens中的LDT,发现该细菌中至少有14个假定的LDT中的14种引起的LD-肽对其存活至关重要。值得注意的是,缺乏独特的7个LDT的突变体在杂种菌中广泛保守的突变体表现出降低的LD互动和PG将PG束缚到外膜β-贝尔β-桶蛋白上的链接。因此,这种突变体遭受了严重的健身损失和细胞形状的圆形,强调了这些菌粒特异性LDT在维持细胞壁完整性和促进延伸方面所起的关键作用。tn-sequering屏幕表现出了a的非冗余功能。Tumefaciens LDTS。具体而言,连字符特异性LDTs与除法和细胞周期蛋白表现出合成的遗传相互作用,而来自另一组的单个LDT。此外,我们的发现表明,缺乏所有LDT的菌株表现出独特的表型特征和遗传相互作用。总体而言,我们的工作强调了ld-rosslinking在a中的关键作用。tume-faciens细胞壁完整性和生长,并为这些交联活动的功能专业化提供了见解。
正确选择投影操作员,对我们来说是零 - 以及内存内核,kðtt \ skÞ,其中s k是kðtt的时间kðttÞ¼0。通过以这种内存内核来编写预计的动态,既可以仅使用短时数据来捕获复杂的(非马克维亚)短时间行为和长期流行量的详细平衡。该原理的最新示例是计算大型生物分子折叠中的平均第一个通道时间,其中只有25 ps参考模拟数据包含建模M s上的事件所需的信息,即,三个数量级长。27这还表明,GQME是动力学问题的介绍,该动力学问题是动态计算对内存核的目标,因此,与用户可能希望采用的任何动态方法相兼容,包括27 - 29,包括近似近似技术,包括表面跳跃的30 - 32-32和EHRENEFEST动力学。33,34然而,此维度降低过程的成本节省依赖于感兴趣的变量与动态变量之间的时间表之间的分离。的确,内存内核仍然与投影空间中排除的最慢变量一样长。因此,即使在运输系数的计算中,将所有最慢的自由度放置在投影空间中也是至关重要的。在实际层面上,投影操作员的选择对计算可行性产生了重大影响。35此GQME用位点数量正式缩放n。这是因为构建动力学N×N矩阵,典型地需要至少n个不同的模拟。例如,以前的工作采取了一种非平衡策略,将投影到局部电子状态的种群上,以计算沿模型一维链的二极管传输系数。36在这里,我们通过久保公式采用了不同的策略,该策略将材料的频率分辨电导率与电流的平衡iCtifuation iClusion联系起来。这种关系表明,采用Mori型投影操作员26与当前的操作员是唯一可观察到的感兴趣的。这种选择的显着结果是,只需要一个平衡计算即可构建GQME,从而使该方法的缩放与系统大小无关。我们的工作表明,该策略是一种紧凑而有效的途径,以编码当前响应和频率分辨电导率。为什么到现在为止,要用Mori - Zwanzig理论桥接Kubo形式主义,以用于极化材料中的电导率预测?虽然地面电子状态上的路径积分模拟已成为主流,但37 - 43
DNA 复制和转录同时发生在同一 DNA 模板上,导致复制体和 RNA 聚合酶之间不可避免地发生冲突。这些冲突会阻碍复制叉并威胁基因组稳定性。尽管许多研究表明正面冲突比同向冲突更有害,也更容易促进 R 环形成,但 RNA 聚合酶障碍极性的根本原因仍不清楚,这些 R 环的结构也只是推测。在这项工作中,我们使用一个简单的模型系统来解决这个复杂的问题,通过检查 Pol II 障碍到通过机械解压缩前进的 DNA 叉来模拟复制体的进展。我们发现,即使转录本大小最小,Pol II 也能更稳定地结合以抵抗正面配置中的移除,这表明 Pol II 障碍具有固有的极性。然而,具有长 RNA 转录本的延长 Pol II 在保留极性的同时成为更强大和持久的障碍,而 RNA-DNA 杂交的形成介导了这种增强。令人惊讶的是,我们发现当 Pol II 与 DNA 叉正面碰撞并回溯时,RNA-DNA 杂合体会在 Pol II 前方的滞后链上形成,形成拓扑锁,将 Pol II 困在叉上。TFIIS 通过切断 Pol II 与杂合体的连接来促进 RNA-DNA 杂合体的去除。我们进一步证明,当 Pol II 仍与 DNA 结合时,这种 RNA-DNA 杂合体可以通过 T7 DNA 聚合酶引发滞后链复制。我们的研究结果捕捉到了 Pol II 与 DNA 叉相互作用的基本特性,揭示了转录-复制冲突的重要意义。
我们概述了两种一般的理论技术,用于模拟Polariton量子动力学和光谱,在由Helestein-Tavis-Cummings(HTC)模型Hamiltonian描述的集体耦合方案下。第一个利用了HTC Hamiltonian的稀疏性,这使人们可以将代理北极星汉密尔顿的成本降低到状态矢量的状态数量,而不是二次顺序。第二个正在应用众所周知的Chebyshev系列扩展方法进行量子动力传播,并将它们应用它们模拟HTC系统中的Polariton动力学,从而允许人们使用更大的时间步骤进行繁殖,并且只需要对Palliton Hamiltonian对国家Vectors进行载体的递归操作。这两种理论方法是通用的,可以应用于任何基于轨迹的非绝热量子动力学方法。我们将这两种技术应用于先前开发的lindblad最佳密度矩阵(L -PLDM)方法,以模拟HTC模型系统的线性吸收光谱,均具有不均匀的位点能量能量障碍以及偶极性方向疾病。我们的数值结果与以前的分析和数值工作非常吻合。
摘要。在本研究中预先提出了极地区域大气气候模型(称为RACMO2.4P1)的下一个版本。主更新包括嵌入Intecast的预测系统(IFS)周期47R1的物理参数包装包。这构成了降水,对流,湍流,气溶胶和表面方案的变化,并包括一种新的云方案,具有更多的预后变量和专用的湖泊模型。fur-hoverore,独立的IF辐射物理模块ECRAD被纳入RACMO,并引入了非冰期区域的多层雪模量。其他更新涉及引入分数陆地面膜,新的和更新的气候数据集(例如气溶胶构成和叶子面积指数),以及对冰川区域的几个参数化的修订。作为概念证明,我们向格陵兰,南极和北极地区的地区展示了第一个结果。通过将结果与观测结果和先前模型版本(RACMO2.33)的输出进行比较,我们表明该模型在表面质量平衡,表面体能平衡,温度,风速,风速,云含量和积雪深度方面很好地形成了。雪水头的对流强烈影响冰盖的局部表面质量平衡,特别是在高积累的地区,例如东南绿地和南极半岛。我们严格评估模型输出,并确定一些可以从进一步的模型开发中拟合的过程。
限制在光学晶格中的极性分子是一个多功能平台,可用于探索基于强、长程偶极相互作用的自旋运动动力学 1,2。Ising 和自旋交换相互作用在微波和直流电场下的精确可调谐性 3 使分子系统特别适合于设计复杂的多体动力学 4–6 。在这里,我们使用 Floquet 工程 7 来实现极性分子的新型量子多体系统。使用在超冷 40 K 87 Rb 分子的两个最低旋转状态中编码的自旋,我们通过观察 Ramsey 对比动力学相互验证了由 Floquet 微波脉冲序列调整的 XXZ 自旋模型与由直流电场调整的模型。该验证为实现静态场无法实现的哈密顿量奠定了基础。特别地,我们观察到了双轴扭曲 8 平均场动力学,它是由 Floquet 设计的 XYZ 模型使用二维层中的巡回分子产生的。未来,弗洛凯设计的哈密顿量可以产生纠缠态,用于基于分子的精密测量9,或者可以利用丰富的分子结构进行多级系统的量子模拟10,11。
在当今的大型半导体物理学中引入,对光 - 耦合的控制产生了一个迷人的对象:激烈的对象。这些杂交光 - 用式元素 - ticles从激子(绑定的电子 - 孔对)和光子之间的混合物中出现。虽然散装半导体中存在激子 - 极地,但已经用嵌入光学微腔内嵌入异质结构中的二维(2D)激子获得了主要进步,如图1 a所示,为1。兴趣 - 吨 - 极性子具有从其激子部分和光子部分继承的独特属性,使它们成为强烈的研究兴趣的主题,其含义从基本物理学2到光电3和量子技术的实用应用。4
摘要:二维材料可访问光子学的最终物理限制,具有吸引人的超级合理光学组件(例如波格和调节剂)。特别是在单层半导管中,强烈的激子共振导致介电常数从正极到均匀的值急剧振荡。这种极端的光学响应使表面激子 - 磨牙能够引导可见光与原子薄层结合。然而,这种超薄波格 - 支持具有低配置的横向电(TE)模式,并且具有短传播的横向磁性(TM)模式。在这里,我们提出,包括单层WS 2和六角形硝酸硼(HBN)的现实分号 - 导管 - 隔离器 - 隔离器超晶格可以提高TE和TM模式的性质。与单个单层相比,分隔两个单层的1 nm HBN间隔物的异质结构可增强TE模式的配置,从1.2到0.5μm左右,而TM模式的平面外扩展则增加了25至50 Nm。我们提出了两个简单的添加性规则,用于在超薄纤维近似中有效的模式结构,用于异质结构,间隔厚度增加。堆栈 -
