摘要:RGD 是用于生物材料中促进细胞粘附的大量三肽的例子,但游离或表面结合的 RGD 三肽的效力比天然蛋白质中的 RGD 结构域低几个数量级。我们设计了一组长度不等的肽,由中心三个残基为 RGD 的纤连蛋白片段组成,以便在不改变结合位点化学环境的情况下改变它们的构象行为。利用这些肽,我们测量了活性位点的构象动力学和瞬态结构。我们的研究揭示了侧翼残基如何影响构象行为和整合素结合。我们发现结合位点的无序对 RGD 肽的效力很重要,并且 RGD 位点附近的瞬态氢键会影响肽的能量景观粗糙度和肽结合。这种现象与长程折叠相互作用无关,有助于解释为什么短结合序列(包括 RGD 本身)不能完全复制细胞外基质蛋白的整合素靶向特性。我们的研究强调肽结合是一个整体事件,在设计功能性生物材料的肽表位时,应考虑比直接参与结合的片段更大的片段。■ 简介
摘要:由于表面暴露的赖氨酸的固有反应性低且在整个蛋白质组中普遍存在,因此对其进行靶向共价修饰具有挑战性。优化可逆结合抑制剂 ( k inact ) 共价键形成速率的策略通常涉及提高亲电试剂的反应性,这会增加离靶修饰的风险。在这里,我们采用了一种替代方法来提高赖氨酸靶向共价 Hsp90 抑制剂的 k inact ,而不依赖于可逆结合亲电性 ( K i ) 或固有亲电性。从非共价配体开始,我们附加了一个手性、构象受限的连接体,它使芳基磺酰氟与 Hsp90 表面的 Lys58 快速且对映选择性地发生反应。共价和非共价配体/Hsp90 复合物的生化实验和高分辨率晶体结构提供了有关配体构象在观察到的对映选择性中的作用的机制见解。最后,我们展示了细胞 Hsp90 的选择性共价靶向,尽管共价配体/Hsp90 复合物同时降解,但仍会导致热休克反应延长。我们的工作突出了设计配体构象约束的潜力,可以大大加速蛋白质靶标表面远端、亲核性较差的赖氨酸的共价修饰。■ 简介共价抑制剂作为药物、细胞生物学工具和化学蛋白质组学探针具有广泛的用途。不可逆的共价修饰导致药物-靶标停留时间与靶蛋白的寿命相匹配,通常与药物清除率无关。 1、2 此外,共价抑制剂可以通过与配体结合位点内或附近的非保守亲核氨基酸反应来区分密切相关的旁系同源物。3 − 8 目标亲核试剂的选择性修饰由两步反应机制决定,其中配体的可逆结合先于共价修饰。可逆结合亲和力和最初形成的非共价复合物内共价键形成的速率 ( k inact ) 都会影响共价抑制剂的效力。9 增加 k inact 的一个明显方法是增强亲电试剂的固有反应性。这种方法的缺点是它增加了发生不良的脱靶反应的可能性。因此,共价抑制剂的优化主要依赖于最大化非共价识别元素的可逆结合亲和力。 10,11 迄今为止,快速作用、高选择性共价配体的设计主要集中在半胱氨酸上,部分原因是其高内在反应性允许使用相对不活泼的亲电试剂(例如丙烯酰胺)。12 − 14 然而,半胱氨酸是蛋白质组中最不常见的氨基酸之一,许多配体结合位点缺乏近端半胱氨酸。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
摘要:分子复合物通常会对构象状态进行取样,从而引导它们发挥特定功能。这些状态可能难以通过传统的生物物理方法观察到,但可以使用各种不同的 NMR 自旋弛豫实验进行研究。然而,当这些应用集中在中高分子量蛋白质上时,快速弛豫信号会使其变得复杂,从而对光谱的灵敏度和分辨率产生负面影响。本文介绍了一种基于甲基 1 H CPMG 的实验,用于研究蛋白质机器的激发构象状态,该实验利用 TROSY 效应来增加信噪比。解决甲基 1 H 跃迁的多样性带来的复杂性,以生成一个强大的脉冲方案,该方案适用于 320 kDa 稳态蛋白 p97。人们越来越认识到,生物分子的运动特性对于功能至关重要,因此有必要关注动力学,以了解这些分子如何在健康和疾病中执行其许多不同的任务。 [1] 细胞的分子机器尤其如此,它们由不同的组件组成,这些组件的相对运动是经过精心设计的,可以进行正常的活动。原则上,溶液核磁共振波谱是研究这些动力学的有效方法,[2] 即使在总分子量接近 1 MDa 的系统中也是如此,只要能够在整个蛋白质复合物中用 13 CH 3 标记关键含甲基氨基酸获得高度氘化的粒子。[3] 在这种情况下,可以利用丰富的甲基内偶极相互作用网络 [4] 通过甲基-TROSY 效应生成高质量的 1 H– 13 C HMQC 数据集,其中 50% 的信号来自磁化转移途径,从而最大限度地减少弛豫损失。[3a] 定量运动的实验