摘要:化学家现在已经合成了在标准Terran DNA中发现的四种标准核苷酸(鸟嘌呤,腺嘌呤,胞嘧啶和胸腺嘧啶)中添加核苷酸的新型DNA。今天在分子诊断中使用了这种“人为扩展的遗传信息系统”;支持定向进化以创建医学上有用的受体,配体和催化剂;并探索与生命早期演变有关的问题。进一步的应用受到无法直接序列DNA含有非标准核苷酸的限制。纳米孔测序非常适合此目的,因为它不需要酶促合成,扩增或核苷酸修饰。在这里,我们采取了第一步来实现8个字母“ Hachimoji”的纳米孔测序,通过使用MSPA(smegmacterium smegmatis porin a)纳米孔评估其纳米孔信号范围,扩展了DNA字母。我们发现Hachimoji DNA在纳米孔测序中表现出比单独标准DNA更广泛的信号范围,并且Hachimoji单碱基取代是可以高度置信的。由于纳米孔测序依赖于分子电机来控制DNA的运动,因此我们通过跟踪Hachimoji DNA的单个Hel308分子的易位来评估HACHIMOJI DNA的易位,从而评估了HACHIMOJI DNA的hel308运动酶与非标准核苷酸的兼容性,从而监测了酶基因酶的eNzeme disnzeme disnzeme disna。我们发现HEL308与Hachimoji DNA兼容,但是与N-糖苷相比,在C-糖苷核苷上行走时会更频繁地分离。c-糖化核苷通过HEL308中的特定位点会诱导更高的解离可能性。这强调了优化纳米孔测序电机以处理不同的糖苷键的需求。它还可以为未来的替代DNA系统的设计提供信息,这些系统可以与现有电动机和毛孔进行测序。
抽象的DNA-蛋白交联(DPC)是最普遍和有害的DNA病变之一,是由于暴露于代谢应激,药物或交联药物(如甲醛(FA))而引起的。fa是甲醇代谢,组蛋白脱甲基化,脂质过氧化和环境污染物的细胞副产品。无法修复FA诱导的DPC几乎所有基于染色质的过程,包括复制和转录,导致免疫缺陷,神经变性和癌症。然而,它在很大程度上仍然未知细胞如何维修DPC。由于缺乏鉴定DPC的技术,我们不理解FA的蛋白质类型会阻碍DPC修复的研究。在这里,我们通过将氯化葡萄球菌差异超速离心与HPLC-MAS-MAS光谱法(MS)耦合,从而设计了一种新型的生物测定法,以介绍FA诱导的DPC。使用该方法,我们揭示了FA诱导的人类细胞中FA诱导的DPC的蛋白质组,发现形成DPC的最丰富的蛋白质是PARP1,拓扑异构酶I和II和II和II,甲基转移酶,DNA和RNA聚合酶,组蛋白,组蛋白,以及核糖体蛋白。为了鉴定修复DPC的酶,我们进行了RNA干扰筛选,发现皮瓣核酸内切酶1(FEN1)的下调使细胞对FA过敏。由于Fen1具有5'-FLAP内切酶活性,因此我们假设FA诱导了DPC偶联的5'-FLAP DNA片段,可以通过Fen1处理。的确,我们证明了FA会损坏通过碱基切除途径(BER)转化为5'-FLAP的DNA碱基。我们还观察到受损的DNA碱基与DPC和FEN1共定位。从机械上讲,我们显示了FEN1在体内修复FA诱导的DPC和裂解5'-FLAP DNA底物,这些DNA具有模拟于体外的DPC。我们还发现,FEN1修复酶拓扑异构酶II(TOP2)-DPC,由其抑制剂依托泊苷和阿霉素诱导的诱导的酶促蛋白酶和阿霉素独立于BER途径,而FEN1和FEN1和DPC靶向的蛋白酶sprtn是对两种FA诱导的非Zym Zym Zym Zymations sprapterations spr的可行途径top2-dpcs。值得注意的是,我们发现FA诱导的非酶DPC和酶ToP2-DPC迅速通过聚辅助核糖基化(ParyLation)迅速修饰,这是一种由PARP1催化的翻译后修饰,由PARP1催化的,这是一种由Paryling DNA损伤损害蛋白和DNA Reparion Reparte resation and DNA损伤蛋白的关键DNA损伤效应器和DNA Reparte resation and dna Reparte stotes和DNA Reparte stotes。,我们用HPLC-MS的抗PAR抗体进行了免疫沉淀(IP)测定,并将Fen1鉴定为parylation底物。接下来,我们表明DPC底物的填充信号发出了Fen1,而Fen1的抚养也将Fen1驱动到DPC位点。最后,使用末端ADP-ribose-MS方法的酶促标记,我们将FEN1的E285残基确定为主要的荷置位点,这似乎是FEN1迁移到DPCS所需的。综上所述,我们的工作不仅揭示了FA诱导的DPC的身份,而且还发现了前所未有的PARP1-FEN1核酸酶途径,是一种通用和势在必行的机制,可以修复其他DPC并防止DPC诱导的基因组不稳定。
核糖体分析 (Ribo-Seq) 揭示了目前注释的编码序列 (CDS) 之外的数千个非规范核糖体翻译位点,从而改变了我们对人类基因组和蛋白质组的理解。保守估计至少有 7000 个非规范 ORF 被翻译,乍一看,这有可能将人类蛋白质 CDS 的数量扩大 30%,从约 19,500 个注释的 CDS 增加到超过 26,000 个注释的 CDS。然而,对这些 ORF 的进一步审查提出了许多问题,即它们中有多少部分真正产生了蛋白质产物,又有多少部分可以根据对该术语的传统理解理解为蛋白质。进一步复杂化的是,已发表的非规范 ORF 估计值相差约 30 倍,从几千到几十万。这项研究的总结让基因组学和蛋白质组学界既对人类基因组中新编码区域的前景感到兴奋,又在寻找如何继续的指导。在这里,我们讨论了非规范 ORF 研究、数据库和解释的现状,重点是如何评估给定的 ORF 是否可以说是“蛋白质编码”。
本文引入了一种新型的多代理增强学习(RL)方法,用于1型糖尿病患者(T1D)的个性化葡萄糖控制。所提出的方法利用了由血糖(BG)代谢模型和多代理角色批评的RL模型组成的闭环系统,该模型充当基底核糖顾问。在三种不同的情况下,评估RL药物的性能并与常规疗法进行了比较。评估指标包括最低,最大和平均葡萄糖水平,以及在二型BG范围内所花费的时间百分比。此外,分析了平均每日推注和基底胰岛素剂量。结果表明,基于RL的基底支柱顾问可通过降低血糖变异性并增加目标范围内70-180 mg / dl的时间的比例来显着改善葡萄糖的控制。具体来说,在方案A,B和C中,目标范围内花费的时间从66个增加。66±34。97%至92。55±4。05%,64。13±33。84%至93。91±6。03%和58。85±34。67%至78。 34±13。 分别为28%。 基于RL的方法还可以防止严重的高血糖事件(P≤0。 05)并减少低血糖的发生。 对于场景A和B,降血糖事件从14个下降。 2%±32。 27%至3.77%±4.01%和16。 59%±32。 分别为42%至2.63%±4.09%。 05)。67%至78。34±13。分别为28%。基于RL的方法还可以防止严重的高血糖事件(P≤0。05)并减少低血糖的发生。对于场景A和B,降血糖事件从14个下降。2%±32。27%至3.77%±4.01%和16。59%±32。分别为42%至2.63%±4.09%。05)。值得注意的是,在情况C中,由于胰岛素敏感性的降低,在任何一种方法中均未经历降血糖事件。此外,该研究表明,与常规治疗相比总的来说,这些发现表明多代理RL方法在获得更好的葡萄糖控制方面具有EFF的性质,并减轻T1D患者严重高血糖的风险。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年8月6日。 https://doi.org/10.1101/2023.08.03.551775 doi:Biorxiv Preprint
摘要简介:细菌病原体中抗生素耐药性的生长是一种即将来临的全球威胁,只能通过开发新的抗菌药物来避免。有希望的答案可能是核糖开关的靶向,几乎完全在细菌中发现的结构化RNA元素。涵盖的区域:本综述将核糖开关作为新型抗菌药物靶标的潜力。总结了当前可用抗生素的作用机理,然后划定了核糖开关的功能机理。然后,我们讨论了开发新方法的潜力,这些方法在其细菌基因表达的背景下靶向范式核糖开关。专家意见:我们重点介绍了以其功能形式靶向核糖开关的潜在优势,该功能形式嵌入了基因表达中,对细菌存活至关重要。我们强调了这种方法的好处,包括潜在的较高的物种特异性和较低的副作用。
卵巢癌(OC)是最常见的妇科恶性肿瘤之一。OC的预后最差和死亡率最高。根据美国癌症协会(Siegel等,2022年)的数据,仅在2022年,仅在2022年就估计了超过19,000例新的OC和12,000例死亡。oc是女性中第七种最常见的恶性肿瘤类型,也是全球死亡率的第八个原因(Gaona-Luviano等,2020)。早期患者的预后更好,但大多数患者在晚期阶段被诊断出来。上皮OC在晚期患者中约为80%。手术伪造和基于铂的化学疗法(例如卡铂和紫杉醇)是一线治疗方案。然而,这些治疗的长期结果并不令人满意。DNA损伤修复缺陷存在于各种肿瘤细胞中。这是肿瘤起始和肿瘤疗法的机制之一。由BRCA基因编码的蛋白质与通过同源重组(HR)途径的DNA双链损伤有关。乳腺癌1/2基因(BRCA1/2)以及其他参与同源重组修复(HRR)基因突变或功能可能会导致同源重组率(HRD),从而导致细胞中的恶性转化(Chiappa等,2021)。parpi已成为OC的分子靶向治疗策略。研究表明,Parpis可以显着改善OC的自由生存(PFS)和总生存率(OS),尤其是在新诊断和通过“综合杀伤力”机制,聚(ADP-核糖)聚合酶抑制剂(PARPI)阻止HRD肿瘤细胞中DNA单链断裂的修复,积累了大量DNA双链链破裂(DSB)(DSB),导致肿瘤细胞的死亡,从而表现出肿瘤的死亡,从而表现出抗肿瘤的死亡。 Al。,2021)。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 6 月 17 日发布。;https://doi.org/10.1101/2023.06.16.545382 doi:bioRxiv 预印本
在简单立方晶格上存在吸引且不可穿透的表面的情况下,用数字方法研究了稀释极限下均聚双链 (ds) 脱氧核糖核酸 (DNA) 的熔化。DNA 的两条链用两个自避行走建模,能够在互补位点相互作用,从而模拟碱基配对。不可穿透表面的建模方法是将 DNA 构型限制在 z 0 平面,单体在 z = 0 处具有吸引相互作用。此外,我们考虑了 ds 段在 z = 0 占据的两种变体,其中计算了一个或两个表面相互作用。这种考虑具有重大影响,甚至会改变吸附状态下结合相的稳定性。有趣的是,吸附从临界变为一级,其修正指数与熔化转变相一致。对于模拟,我们使用修剪和丰富的 Rosenbluth 算法。
核糖体 DNA (rDNA) 基因座含有数百个串联重复的核糖体 RNA 基因拷贝,这些基因是维持细胞生存所必需的。这种重复性使其极易因 rDNA 拷贝之间的染色单体内重组而导致拷贝数 (CN) 丢失,从而威胁到 rDNA 的多代维持。如何抵消这种威胁以避免谱系灭绝仍不清楚。在这里,我们表明 rDNA 特异性逆转录转座子 R2 对于恢复性 rDNA CN 扩增以维持果蝇雄性生殖系中的 rDNA 基因座至关重要。R2 的消耗导致 rDNA CN 维持缺陷,导致繁殖力在几代内下降并最终灭绝。我们发现,R2 核酸内切酶造成的双链 DNA 断裂(R2 的 rDNA 特异性逆转座的一个特征)会启动 rDNA CN 恢复过程,该过程依赖于 rDNA 拷贝处 DNA 断裂的同源性依赖性修复。这项研究表明,活性逆转座子为其宿主提供了必不可少的功能,这与转座因子完全自私的名声相反。这些发现表明,有利于宿主适应性可能是转座因子抵消其对宿主威胁的有效选择优势,这可能有助于逆转座子在整个分类群中广泛成功。