杂种优势描述的是杂交植株相对于其亲本的产量和稳健性增加,是现代作物育种的基石 1 。除双亲杂种优势外,在玉米、马铃薯和苜蓿中还观察到同源多倍体渐进杂种优势 (APH),当来自四个不同祖父母的基因组片段组合时,会产生额外的杂种优势效应 2 。APH 尚未在商业育种中得到充分利用,因为减数分裂会重新分配基因型,并且无法生产受益于 APH 的基因一致的种子。先前在拟南芥和水稻中建立的“有丝分裂而非减数分裂”(MiMe) 系统可产生克隆的、未减数的配子 3 – 7 ,但尚未在双子叶作物中建立或在设计多倍体基因组工程中进行测试。在这里,我们建立了番茄多倍体基因组设计,通过两个不同杂交亲本产生的克隆配子的杂交,实现了四种预定义基因组单倍型的可控组合。我们着手在番茄中建立 MiMe 系统,以可控的方式产生克隆配子。基于对番茄减数分裂突变体的基本了解(补充说明 1),我们发现可以通过 SlSPO11-1、SlREC8 和 SlTAM 的突变在自交系番茄中建立功能性 MiMe 系统(图 1a-c、扩展数据图 1 和 2、补充图 1-16 和补充表 1-4)。我们在三种杂交番茄基因型中实施了 MiMe 系统,包括 Moneyberg-TMV ⨯ Micro-Tom (MbTMV-MT) 模型杂交品种、枣番茄商业杂交品种‘Funtelle’和串番茄商业杂交品种‘Maxeza’(图 1a-c)。我们鉴定出两个独立的 MbTMV-MT、三个独立的 Funtelle 和三个独立的 Maxeza 品系,它们在 SlSPO11-1、SlREC8 和
在后院的番茄园里,我把事情安排得简单而不政治化:口袋里装着番茄胶带,干净的剪刀用来修剪根茎,一把锄头,几根旧竹竿用来帮助黄瓜藤回到它们应该在的棚架上。棚架是黄瓜生长的最佳方式。你可以看到黄瓜,它们很容易采摘。而且它们不会藏在地上的叶子下面,在那里被遗忘的种子会结籽并压死藤蔓。西红柿?把它们关在笼子里或用木桩固定。洋葱排成一排。还有罗勒。我只需要找到一棵凤尾鱼树——谁不喜欢番茄洋葱沙拉里的凤尾鱼呢?早上我去的院子里,鸟儿在歌唱,但有一件事我听不到:政治。西红柿不擅长表现美德。洋葱不会抱怨仇恨邮件。它们不会抱怨罗勒说的话。黄瓜呢?它们按照指令行事。它们不会聚众闹事,要求最高法院无视法律——这样他们就能得到想要的东西——然后把花园变成一片混乱的杂草丛。我不会容忍这种行为。我是这里的首席大法官。它们得到的只是水、肥料、几句鼓励和关爱。但法律就是法律。在法律的最后,有一个神圣的条款允许我吃掉它们。所以它们等着我,早上戴着软帽的男人。几周前,我发现了一株野番茄,让它活了下来,难道我不够仁慈吗?它一定是从一颗掉落的种子中发芽的。一位同事的父亲是农民,去年他给了我一株他的传家宝番茄植株。我把它种在前排。野番茄可能就是其中之一。与此同时,神犬宙斯把兔子赶走了。今年的兔子大军规模庞大,肉多,而且特别愚蠢。有一只特别愚蠢的兔子开始在里面挖窝
摘要:由柑橘黄单胞菌(Xcc)引起的柑橘溃疡病是全球大多数柑橘产区的重要经济病害。Xcc 分泌一种转录激活因子样效应物 (TALE) PthA4,与溃疡病易感基因 LOB1 启动子区的效应物结合元件 (EBE) 结合,激活其表达,从而引起溃疡症状。利用 Cas9/gRNA 编辑 EBE 区域已用于生成抗溃疡病的柑橘植株。然而,生成的大多数 EBE 编辑株系含有 1–2 bp 的插入/缺失,这更有可能通过 PthA4 适应来克服。TALE 的适应能力与与 EBE 的错配数量呈负相关。已知 LbCas12a/crRNA 产生的缺失比 Cas9 更长。在本研究中,我们使用了一种耐高温且更高效的 LbCas12a 变体 (ttLbCas12a),该变体含有单个替换 D156R,用于修改 LOB1 的 EBE 区域。我们首先构建了 GFP-p1380N-ttLbCas12a:LOBP,经证实,该变体在柚子 (Citrus maxima) 叶片中通过 Xcc 促进的农杆菌渗滤而发挥功能。随后,我们在柚子中稳定表达了 ttLbCas12a:LOBP。生成了八个转基因株系,其中七个株系显示 EBE 的 100% 突变,其中一个株系是纯合的。EBE 编辑株系具有高达 10 bp 的 ttLbCas12a 介导的缺失。重要的是,这七个株系具有抗溃疡病性,并且未检测到脱靶。综上所述,ttLbCas12a 可有效利用来生成具有短缺失的双等位基因/纯合柑橘突变系,从而为柑橘的功能研究和育种提供有用的工具。
评估从重金属污染土壤中分离出的 26 种细菌产生 1-氨基环丙烷-1-羧酸 (ACC) 脱氨酶的能力,证实了它们在减少重金属胁迫条件下的重要作用。26 种细菌分离株中有 8 种对 ACC 脱氨酶的产生呈阳性。分离株 #11 通过产生 α-酮丁酸 (102 µM/mg 蛋白质/小时) 具有最高的酶活性。此外,具有多种有利特性的 ACC 脱氨酶产生、根部定植、非致病性细菌也是选择,包括地衣芽孢杆菌 10 (#10)、铜绿假单胞菌 18 (#18)、肠杆菌 11Uz (#11) 和阴沟肠杆菌 Uz_5 (#5)。用悬浮液 #11 处理小麦品种“Chillaki”种子,在金属胁迫条件下,种子发芽率和生长强度 (22%) 显著提高。在严重金属胁迫下生长的植物经悬浮液 #11 处理后,结果显示与对照处理相比,植物生长指标和总叶绿素含量显著改善。此外,在小麦种子中,用肠杆菌 11Uz 悬浮液处理后,脯氨酸、过氧化氢酶和 SOD 活性上升。结果支持使用 ACC 脱氨酶产生肠杆菌 11Uz (#11) 来减轻压力,因为它可以通过其抗氧化系统保护小麦植物免受重金属胁迫。关键词:本地细菌、小麦种子、金属胁迫条件、ACC 脱氨酶、肠杆菌、抗性、脯氨酸、SOD、CAT、发芽率、生长强度 主要发现:具有植物生长刺激特性的 ACC 脱氨酶合成细菌对镍和镉阳离子表现出最高的抗性。选择细菌成功研究了在镍和镉胁迫条件下生长的小麦植株的形态特征和叶绿素含量。细菌在缓解镍和镉胁迫条件方面表现突出。
摘要:xa13是一个隐性多效基因,对水稻抗病性起正向调控作用,对水稻育性起负向调控作用,严重制约了其在水稻育性中的应用。本研究利用CRISPR/Cas9基因编辑技术删除Xa13基因启动子部分序列,包括病原菌诱导表达元件,使编辑后的启动子区水稻失去病原菌诱导基因表达能力,但不影响叶片和花药中背景基因的表达,从而获得抗病性和正常产量。研究还筛选出一株删除目的序列、分离T 1 代(无转基因株系)外源转基因片段的抗病、育性正常植株家系,并对T 2 代水稻的重要农艺性状进行了研究。结果表明,添加/不添加外源DNA的T 2 代水稻在抽穗期、株高、单株穗数、穗长和田间结实率等方面与野生型均无统计学差异。成功转化2个重要常规水稻品种空育131(KY131,耿/粳稻)和黄华占(HHZ,鲜/籼稻),并获得抗病、丰产材料,是目前我国2个经过改良后可直接用于生产的重要常规水稻品种。转基因水稻(KY-PD和HHZ-PD)叶片中Xa13基因在病原菌侵染后没有被诱导表达,表明此方法可普遍有效应用,有利于推动xa13这一隐性抗病多效基因在水稻抗白叶枯病方面的实际应用。通过编辑基因非编码区调控基因表达的研究,为今后开展分子设计育种提供了新思路。
摘要 逆转座子是一类可移动的遗传元件,能够通过逆转录 RNA 中间体进行转座。水稻品种日本晴在第 7 号染色体上(Tos17 Chr.7)和第 10 号染色体上(Tos17 Chr.10)含有两个几乎相同的 Tos17 基因组拷贝,Tos17 是一个内源的 copia 样 LTR 逆转座子。前期研究表明,在组织培养过程中,只有 Tos17 Chr.7 具有转座活性。Tos17 Chr.7 已被广泛用于插入诱变,作为水稻基因功能分析的工具。然而,在水稻转化过程中,Tos17 Chr.7 转座可能会产生具有不良性状的体细胞突变,从而影响转基因的评估或应用。本研究利用 CRISPR/Cas9 基因编辑系统构建了一个 Tos17 Chr.7 敲除突变体 D873。 Tos17 Chr.7 在D873上的基因编辑等位基因被命名为Tos17 D873 ,该基因在Tos17 Chr.7的pol基因上有一个873bp的DNA缺失,从而导致GAG-整合酶前结构域和整合酶核心结构域的缺失。虽然Tos17 D873的转录在D873愈伤组织中被激活,但在再生的D873植株中没有检测到Tos17 D873的转座。结果表明GAG-整合酶前结构域和整合酶核心结构域是Tos17 Chr.7转座所必需的,且这两个结构域的缺失不能被水稻基因组中的其他LTR逆转录转座子补充。由于 Tos17 Chr.7 衍生的体细胞克隆诱变在 D873 植物中被阻断,因此 Tos17 D873 等位基因的产生将有助于生产转基因水稻植物,以进行基因功能研究和遗传工程。类似的方法可用于在作物育种中失活其他逆转录转座子。
摘要 在当今生态意识强烈的时代,消费者选择的食物反映了道德和环境问题,这增加了对有机产品的需求。生物防治是有机农业中可行的植物保护方法。冷冻干燥是一种长期保存微生物的技术,可确保其遗传稳定性和生存能力。为了减少冷冻干燥对细胞的损害,使用海藻糖和味精等冷冻保护剂。本研究评估了在冷冻干燥过程中添加这些物质对所选酵母分离物的生存能力、它们在番茄叶片上存活的能力以及保持对抗灰葡萄孢菌的拮抗特性的影响。在温室条件下,在冷冻干燥过程之前和之后,对酵母分离物 114/73(Wickerhamomyces anomalus EC Hansen)和 117/10(Naga nishia albidosimilis Vishniac & Kurtzman)在番茄植株上进行了测试,以了解其在叶片上定植的能力以及作为 B. cinerea 的预防和干预治疗。在体外评估了冷冻干燥后的酵母活力。海藻糖和谷氨酸钠均在冷冻干燥过程中提高了酵母活力。活力不是很高(117/10 从 30.33% 到 36.17%,114/73 从 10.67% 到 16.5%)。冷冻干燥后脱水的酵母用海藻糖和谷氨酸钠保护,在番茄叶片上显示的菌落数与冷冻干燥前相同。保护性治疗的效果取决于酵母分离物、冻干过程中使用的保护性物质、治疗时机(预防与干预)以及这些因素之间的相互作用。冷冻保存的分离物 117/10 的效果优于添加海藻糖或谷氨酸钠的 114/73,将疾病严重程度指数从 88.3%(对照)降低至 18.75 - 55.33%。预防性治疗比干预更有效。酵母分离物在冻干后对灰葡萄孢菌的叶片定殖能力和生物防治效果为可持续农业提供了有希望的解决方案。然而,可能需要进一步研究,以分析各种因素之间的相互作用并优化策略。
大米是大约一半人类最重要的营养来源 [1]。大米不仅满足了世界人口 21% 的能量需求,更是东南亚国家人民的生命线,占他们热量摄入的 76% [2]。大米对其经济的贡献巨大,因此这些国家的社会稳定、粮食安全和经济发展都依赖于大米生产力的提高。由于人口增长、饮食结构变化、经济条件改善和产量提高等多种因素,大米消费量将继续增加 [3]。预计到 2050 年世界人口将达到 90 亿,增加大米产量对于预防未来的粮食危机至关重要。除了全球人口增长之外,气候变化和水稻产量停滞也增加了提高水稻产量的紧迫性。由于气候变化,许多国家的水稻种植受到多种生物和非生物胁迫的威胁。应制定创新策略,设计新的、高产和耐气候性的基因型,以提高水稻种植的可持续性。必须探索农学上重要性状的基因和调控网络,例如产量和产量构成性状、对各种生物和非生物胁迫的耐受性以及稻米品质性状。应开发适当的分子工具用于育种计划,以积累理想的性状和基因。由于分子生物学、基因工程和各种组学领域的惊人进步,这些目标可以通过应用新的分子工具和技术来实现。许多形态和生理性状都需要改良,以提高包括水稻在内的每种作物的遗传产量潜力。例如,在理想型育种的情况下,研究人员可视化水稻植株结构,然后不断改良对作物生产力有直接或间接影响的性状[ 4 ]。 《国际分子科学杂志》的当前特刊名为“水稻的分子研究”,汇集了九篇原创研究文章和一篇评论,利用先进的分子工具揭示了一些关键农学重要属性的分子基础,例如耐盐性、开花、分蘖和叶片角度、粒重以及对褐飞虱和白背飞虱的耐受性。
马铃薯 ( Solanum tuberosum ) 是一种高度多样化的四倍体作物。优良品种杂合性极强,品种内和品种间短片段多态性 (indel) 和单核苷酸多态性 (SNP) 的发生率很高,在 CRISPR/Cas 基因编辑策略和设计中必须考虑这些因素才能获得成功的基因编辑。在本研究中,对马铃薯品种 Saturna 和 Wotan 中葡聚糖水双激酶 (GWD)1 和抗霜霉病 6 (DMR6-1) 基因分别进行深入测序,结果显示与杂合二倍体 RH 基因组序列相比,四倍体与二倍体相比,存在 indel 和 1.3 – 2.8 的高 SNP 发生率。这使向导 RNA (gRNA) 和诊断性 PCR 设计变得复杂。细胞库(原生质体)水平的高编辑效率对于实现四倍体中的完全等位基因敲除以及减少下游繁琐而精细的植株再生至关重要。在这里,CRISPR/Cas 核糖核蛋白颗粒 (RNP) 通过聚乙二醇 (PEG) 介导的转化瞬时递送到原生质体中。对于 GWD1 和 DMR6-1 中的每一个,设计了 6 – 10 个 gRNA 来靶向包含两个基因的 5 ' 和 3 ' 端的区域。与包括多种生物体的其他研究类似,单个 RNP/gRNA 的编辑效率差异很大,并且一些产生了特定的插入/缺失模式。尽管与靶向 3′ 端相比,靶向 GWD1 5′ 端的 RNP 产生的编辑效率明显更高,但 DMR6-1 5′ 端和 3′ 端的编辑效率似乎有些相似。当仅靶向 GWD1 基因的 3′ 端时,同时用两个 RNP 靶向 5′ 端或 3′ 端(多路复用)对总体编辑产生了明显的正协同效应。与单个 RNP/gRNA 转化中获得的编辑效率相比,位于不同染色体上的两个基因的多路复用对单个 RNP/gRNA 编辑效率没有影响或略有负面影响。这些初步发现可能会引发更大规模的研究,以促进和优化植物的精准育种。
CRISPR–Cas9 方法已被用于在植物中产生随机插入和缺失、大量缺失、短序列的靶向插入或替换以及精确的碱基变化 1 – 7 。然而,用于功能基因组学研究和作物性状改良所需的长序列和基因的靶向插入或替换的通用方法很少,并且很大程度上取决于选择标记的使用 8 – 11 。基于在哺乳动物细胞中开发的方法 12 ,我们利用化学修饰的供体 DNA 和 CRISPR–Cas9 将长达 2,049 个碱基对 (bp) 的序列(包括增强子和启动子)插入水稻基因组,效率为 25%。我们还报道了一种依赖于同源性定向修复、化学修饰的供体 DNA 和目标位点串联重复序列的基因替换方法,以 6.1% 的效率实现了长达 130 bp 的序列的替换。在哺乳动物细胞中,使用平端的、5'-磷酸化的双链寡脱氧核苷酸 (dsODN),在两条 DNA 链的 5' 和 3' 端带有两个硫代磷酸酯键,可导致寡脱氧核苷酸 12 的强有力靶向整合。硫代磷酸酯键修饰旨在稳定细胞中的寡核苷酸,而 5'-磷酸化可促进非同源末端连接 (NHEJ),这是修复双链断裂 (DSB) 的主要途径,尤其是在培养细胞中。在用于再生小植株的培养植物细胞中,例如水稻愈伤组织细胞,NHEJ 也是主要的 DSB 修复途径 10,13。因此,这种类型的修饰 dsODN 可能会提高植物细胞中靶向插入的效率。为了验证这一假设,从水稻ADH1(酒精脱氢酶1)14 的5′非翻译区(UTR)中取出一个60bp的翻译增强子(ADHE)作为供体DNA,插入水稻的主要耐盐基因座SKC1(补充表1)15。如图1a所示,体外合成的ADHE供体DNA两侧有两个带有硫代磷酸酯键和5′-磷酸化修饰的核苷酸(ADHE;见补充图1b)。为了与传统供体DNA进行比较,还合成了未修饰的单链和双链寡脱氧核苷酸(ssADHE和dsADHE),带有三核苷酸多态性以供检测(图1b和补充图1b)。设计了一个针对 5 ʹ UTR 的单向导 RNA (sgRNA) (sgRNA-1),并将其构建到 CRISPR–Cas9 载体 pCBSG032 中(图 1c 和补充图 1a)。将三个供体 DNA 寡核苷酸按等摩尔比例混合,然后通过粒子轰击法将其与 CRISPR–Cas9 质粒 DNA (sgRNA-1) 一起引入中花 11 (ZH11) 水稻愈伤组织中。