抽象背景:药物目标相互作用预测对于缩小候选药物范围的范围至关重要,因此是药物发现中的至关重要的一步。由于生化实验的特殊性,新药的发展不仅昂贵,而且耗时。因此,药物靶标相互作用的计算预测已成为药物发现过程中的重要方法,旨在大大减少实验成本和时间。结果:我们提出了一种基于特征表示学习和名为DTI-CNN的深神经网络的基于学习的方法,以预测药物目标相互作用。我们首先使用Jaccard相似性系数并重新启动随机行走模型,从异质网络中提取药物和蛋白质的相关特征。然后,我们采用deno的自动编码器模型来降低维度并确定基本功能。第三,根据从上一步获得的特征,我们构建了一个卷积神经网络模型,以预测药物与蛋白质之间的相互作用。评估结果表明,DTI-CNN的平均AUROC得分和AUPR得分为0.9416和0.9499,其性能比其他三种现有的最新方法更好。结论:所有实验结果表明,DTI-CNN的性能要比现有方法中的三种方法更好,并且所提出的方法的设计适当设计。
具有 3-D 双曲空间 H 3 。当 h eff = nh 0 时,任何携带暗物质的系统的磁体 (MB) 都提供了任何系统的表示(反之亦然)。MB 能否提供这种表示,作为因果菱形 (cd) 的 3-D 双曲面的镶嵌,定义为 M 4 的未来和过去定向光锥的交点?由 SL (2, Z) 的子群或其用代数整数替换 Z 的泛化标记的镶嵌点将由其统计特性决定。H 3 处神经元磁像的位置将定义 H 3 的镶嵌。镶嵌可以映射到庞加莱盘的模拟 - 庞加莱球 - 表示为未来光锥的 t = T 快照(t 是线性闵可夫斯基时间)。t = T 之后,神经元系统的大小不会改变。镶嵌可以将认知表征定义为一组离散的时空点,其坐标为可分配给表示 MB 的时空表面的有理数的某种扩展。有人可能会认为 MB 具有更自然的圆柱对称性而不是球对称性,因此也可以考虑在 E 1 × H 2 处使用圆柱表示
时间窗口的选择主要影响分段特征提取程序的有效性。我们提出了一种增强的模式袋表示,可以在宽窗口范围内捕获大脑动态的高级结构。因此,我们为短时公共空间模式算法引入了具有扩展窗口长度的增强实例表示。基于多实例学习,通过稀疏回归选择相关的模式袋以输入袋分类器。所提出的高级结构表示有两个贡献:(i)提高双条件任务的准确性,(ii)通过学习到的稀疏回归拟合更好地理解动态大脑行为。使用支持向量机分类器,在公共运动图像数据集(左手和右手任务)上实现的性能表明,所提出的框架执行的结果非常有竞争力,对脑电图记录的时间变化具有鲁棒性并有利于类可分性。
摘要 - LiDar-Camera校准在自主驾驶中起着至关重要的作用。然而,操作诱导的因素(例如物理振动和温度变化)降低了部署前校准精度,从而导致了环境感知性能恶化。最近的重新校准方法通过利用LiDAR和相机的相对属性,在没有目标板的情况下实现了在线校准。尽管如此,我们还是为LIDAR-CAMERA在线校准提供了一个新颖的框架,该框架采用了变压器网络来学习相机与激光雷达传感器之间的重要相互作用。此外,我们的新型框架设计通过利用两个传感器之间的对应点信息来促进有效的校准。这允许利用全球空间上下文,并通过整合跨模态的信息来实现高性能。实验结果表明,与最先进的基准相比,我们的方法证明了表现出色的性能。
1麦克斯·普朗克人类认知与脑科学研究所神经物理学系,德国莱比锡; 2国际麦克斯·普朗克(Max Planck)的沟通神经科学研究学院:功能,结构和可塑性,德国莱比锡; 3美国查尔斯敦,马萨诸塞州综合医院的Athinoula A. Martinos生物医学成像中心; 4美国波士顿哈佛医学院放射学系; 5美国剑桥,马萨诸塞州科技研究所的哈佛 - 梅特卫生科学与技术部; 6美国圣地亚哥圣地亚哥州立大学科学学院心理学系; 7 Poeppel Lab,ErnstStrüngmann研究所(ESI)与Max Planck Society合作的神经科学学院,德国法兰克福AM,德国法兰克福; 8 Felix Bloch固态物理研究所,物理与地球科学学院,莱比锡大学,德国莱比锡
离线增强学习的最新进展(RL)(Levine等人,2020年)使用预采用的数据集为现实世界中的培训政策开辟了可能的可能性(Kalashnikov等人。,2018年; Rafailov等。,2021; Kalashnikov等。,2021),自然语言处理(Jaques等人,2019年),教育(De Lima and Krohling,2021年),电力供应(Zhan等人,2022)和医疗保健(Guez等人,2008年; Shortreed等。,2011年; Wang等。,2018年;基利安等人。,2020)。虽然大多数离线RL研究都集中在单任务问题上,但是在许多实际情况下,多个任务是相关的,并且通过利用所有可用数据共同学习多个任务是有益的(Kalashnikov等人。,2018年; Yu等。,2021,2022; Xie and Finn,2022)。在这种情况下,一种流行的方法是多任务表示学习,该代理的目的是通过在相关任务之间提取共享的低维表示功能来解决问题,然后在此通用表示上使用简单功能(例如线性)来解决每个任务(Caruana,1997; Baxter,2000)。尽管多任务表示学习取得了经验成功,尤其是在增强学习在降低样品复杂性方面的功效方面的实现(Teh等人,2017年; Sodhani等。,2021; Arulkumaran等。,2022),对其的理论理解仍处于早期阶段(Brunskill和Li,2013年; Calandriello等人。,2014年; Arora等。,2020年; Eramo和Al。,2020年;胡和al。,2021; lu和al。,2021; Pacchiano的磨坊,2022年)。虽然
摘要 - 在这项工作中,我们提出了一种新的方法,将机器人几何形状表示为距离场(RDF),该方法将签名距离场(SDF)的原理扩展到铰接的运动链。我们的方法采用了伯恩斯坦多项式的组合,以高精度和效率编码每个机器人链路的签名距离,同时确保SDF的数学连续性和不同性。我们进一步利用机器人的运动学链来在关节空间中产生SDF表示,从而允许以任意关节配置进行稳健的距离查询。提议的RDF表示在任务和关节空间中都是可区分和平滑的,使其直接集成到优化问题。此外,机器人的0级集合对应于机器人表面,可以将其无缝整合到全身操纵任务中。我们在模拟和7轴Franka Emika机器人中进行了各种经验,与基线方法进行了比较,并证明了其在避免碰撞和全身操纵任务方面的效率。项目页面:https://sites.google.com/view/lrdf/home
电网运营与环境系统和人类系统(如交通、农业、经济和金融市场)的互动日益密切。我们的目标是讨论建模方面的差距和机遇,以推动多部门适应和权衡的科学发展。我们专注于电力系统运营模型,这些模型通常代表几天到一年内电网运营的关键物理和经济方面,并假设电网基础设施固定。由于计算负担,模型通常是定制的,以反映区域资源机会、数据可用性和感兴趣的应用。我们将电力系统运营模型概念化为四个核心过程:物理电网资产(发电、输电、负载和存储)、模型目标和目的、机构和决策代理以及绩效指标。我们根据对 23 个现有模型的审查对这些核心过程的表示进行了分类。以围绕电网和短期不确定性、长期全球变化和多部门技术创新的科学问题为例,我们报告了研究界采用的流程保真度和可处理性之间的权衡,以表示电力系统运行模型中的多部门相互作用。我们对研究方向的建议与模型无关,侧重于核心过程及其与其他人类系统的相互作用,并考虑计算权衡。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。