戴夫·约翰逊是北约国际参谋防御政策和规划司的一名参谋,他于 2005 年加入该司。除了目前在北约国防政策方面的工作外,他还曾在北约-俄罗斯理事会就国防透明度、降低风险和北约-俄罗斯导弹防御合作开展工作。他还曾在格鲁吉亚和乌克兰从事安全部门改革和能力建设工作。在他担任美国空军军官期间,他曾在空军参谋部担任苏联和俄罗斯-欧亚大陆政治军事分析员;在美国驻莫斯科大使馆的美国国防武官办公室担任助理空军武官;在美国战略司令部担任负责战略预警的部门负责人以及负责监测和评估俄罗斯、中国和世界其他地区导弹和大规模杀伤性武器威胁的部门负责人;并在欧洲盟军最高司令部 (SHAPE) 和盟军转型司令部 (ACT) 担任部队规划经理。他拥有伊利诺伊大学香槟分校俄罗斯和东欧研究学士学位以及海军研究生院国家安全事务硕士学位。他毕业于美国空军中队军官学校、空军指挥参谋学院、武装部队参谋学院的驻地项目以及空军战争学院的非驻地项目。约翰逊先生近期的出版物包括《俄罗斯应对冲突的方法:对北约威慑和防御的影响》,研究论文编号111(罗马:北约防御学院,2015 年)、《俄罗斯应对冲突的方法中的核武器》(巴黎:战略研究基金会,2016 年)以及《ZAPAD 2017 演习和欧洲-大西洋安全》(北约评论杂志,2017 年)。本文中表达的观点由作者负责,并不一定反映北大西洋公约组织的观点。作者感谢那些对本文草稿提出评论的人,包括 Ivanka Barzashka、Kristin Ven Bruusgaard、Yannick Jamot、Brad Roberts、Michael Ruhle 和 David Yost。作者对本文表达的观点负全部责任。
Erg和Thara Mou在沙特阿拉伯王国的钴炼油厂建立了合作伙伴关系,正在推进开发硫酸钴炼油厂的计划,该计划将从其Metalk hatek intall设施中提供氢氧化钴,从其在民主共和国的Metalk Eunder eunder Resource Group(ERG)中宣布,该工具宣布了批准的宣言,该工具宣布了一份批准的宣言。钴硫酸盐,这是钴电动汽车电池的主要供应形式。垂直整合公司的钴业务的举动,旨在加强其作为化学部门的战略供应商的地位,尤其是用于电动汽车电池的地位。erg已将沙特阿拉伯王国确定为炼油厂的潜在寄宿管辖权,并与Thara Future Investment Company(Thara)合作,共同调查并从事该国投资。thara是由著名的沙特投资者最近建立的投资平台,专注于释放2030年愿景的机会,尤其是在王国拥有明显优势的部门。他们旨在利用王国的巨额矿产财富,并利用行业中的价值链,包括:化学,废物管理和未来材料。erg和thara今天概述了他们的合作备忘录。“ ERG预计电动汽车的持续市场渗透将推动到2030年对NCM和NCA钴电池的需求,”欧亚大陆资源集团首席执行官Benedikt Sobotka说。“ ERG正在领导行业努力,以确保全球可持续的,可追溯的钴采购到电池供应链中。与塔拉(Thara)联手将加速我们在王国中硫酸钴炼油厂的潜在发展。”塔拉(Thara)的执行合伙人Hisham Attar说:“当我们开始在王国中发展这个关键价值链时,我感到非常兴奋。”“这项工作体现了我们致力于创新和可持续增长的承诺,从而释放了与我们的愿景和目的无缝吻合的新机会。”该炼油厂将提供来自ERG Metalkol设施的刚果民主共和国的氢氧化钴,这是一种历史悠久的尾矿开垦和环境恢复操作,在氢氧化物中生产高品质的铜阴极和钴。
附件指导变更 4.1。(变更)一般信息。DEERS 计划承认未婚子女,包括继子女、法定监护人、寄养子女和担保人的领养子女,依法有权享受 MC,直至 21 岁,除非他们结婚或加入现役军队。如果担保人提供超过 50% 的支持并为孩子提供家庭或维持家庭,他们也有权享受小卖部、交换和 MWR 特权。4.1.2。(变更)儿童身份证在 10 岁时签发。有关 10 岁以下身份证签发,请参阅第 4.4 段,有关继子女资格,请参阅第 4.21 段和表 4.17。例外:自 2011 年 1 月 1 日起,TRICARE 青年 (TYA) 计划仅授权 MC(无购物特权),年龄不超过 26 岁。身份证在 TYA 期间内或 VO 在 RAPIDS 中验证记录之日起 4 年内有效,以先到者为准。注意:如需了解资格和注册详情,请访问当地 TRICARE 服务中心 (TSC),http://www.tricare.mil 或 TRICARE 地区承包商 - 北部 1-877-874-2273,南部 1-800- 444-5445,西部 1-888-874-9378,欧亚大陆-非洲 +44-20-8762-8384,拉丁美洲和加拿大 +1-215-942-8393,或太平洋 +61-2-9273-2710。4.16.2。(更改)有关基本文件资格,请参阅表 A5.1,规则 18h。表 A5.1 中列出的资格文件,规则 18h,将扫描到 10 岁以下儿童的 DEERS 数据库中。4.17.(更改) 未收养儿童。国防部长于 1994 年 10 月 5 日承认了未收养儿童。如果符合表 4.13 中的资格标准,由安置机构(经合格机构认可或更高)安置在成员或前成员家中的收养前儿童可能有资格获得 MC。注意:就本说明而言,美国或美国领土的授权安置机构由完成收养程序的州或领土授权,可进行收养。在所有其他地区,相关军事部门的适当助理部长或他或她授权批准的适当官员必须批准认可请求。4.17.2.(更改)有关基本文件资格,请参阅表 A5.1。表 A5.1 中列出的 10 岁以下儿童的资格文件被扫描到 DEERS 数据库中。表 4.11。(更改) 法定监护人处理程序。
准备好的声明:彼得·拉夫 哈德逊研究所欧洲和欧亚中心高级研究员兼主任 在外交事务委员会欧洲小组委员会面前 美国众议院 2024 年 9 月 11 日 对抗中国在欧洲的恶意影响 基恩主席、基廷排名成员和小组委员会的尊敬成员: 感谢你们今天有机会在你们面前作证。我的名字是彼得·拉夫。我是哈德逊研究所欧洲和欧亚中心主任,在那里担任高级研究员。我在这次证词中表达的观点是我个人的观点,不应被视为代表哈德逊研究所的观点。欧洲为何重要 今天的听证会涉及对美国至关重要的问题。一个多世纪以前,现代地缘政治之父哈尔福德·麦金德创造了一个术语来描述我们称之为欧亚大陆的相互交错的大陆。他将欧亚大陆描述为世界岛。“谁统治世界岛,”麦金德假设,“谁就统治了世界。” 1 在那个世界岛上,欧洲是美国的前沿作战基地所在地,也是我们财富和繁荣的重要来源。美国在欧洲拥有数万名永久部署的军队,遍布基地网络,保障着世界上最重要的经济关系。2 2023 年,穿越北大西洋的货物量是美国与中华人民共和国 (PRC) 贸易量的两倍多。同年,美国公司向欧洲出售了近 5000 亿美元的商品。3 欧洲也是美国原油和液化天然气 (LNG) 的主要目的地。美国向欧洲输送的天然气是向亚洲输送的两倍。最重要的是,美国和欧洲通过外国直接投资 (FDI) 实现了一体化。4 美国 60% 以上的 FDI(4 万亿美元)在欧洲;事实上,美国在欧洲的 FDI 是在亚洲的 2 到 4 倍。就欧洲而言,它在美国的投资为 3.4 万亿美元,是亚洲投资者在美国投资的三倍多。5 1 H.J.Mackinder,《民主理想与现实》(纽约:亨利·霍尔特,1942 年),150。2 军事和国防部拨款基金 (APF) 文职人员人数数据,第 I 列,第 241 行,《劳动力报告和出版物》2024 年 6 月,美国国防部,https://dwp.dmdc.osd.mil/dwp/app/dod-data-reports/workforce-reports 。5 Hamilton 和 Quinlan,《跨大西洋经济 2024》。3 Daniel S. Hamilton 和 Joseph P. Quinlan,《2024 年跨大西洋经济:美国和欧洲之间的就业、贸易和投资年度调查》,(华盛顿特区:约翰霍普金斯大学,2024 年),第 4 卷 Hamilton 和 Quinlan,《2024 年跨大西洋经济》。
由于文明的最初,人类就利用能量为日常活动提供动力。人类的历史与能源使用的历史平行:随着我们的文明和人口的增长,我们的能源使用也是如此。古老的帝国倒下并引起了新的帝国,以及用来为这些帝国持续发展的能源的来源。有时,革命性的进步将人类推向了一个新时代。也许这些转变中最著名的是工业革命,该革命发生在18世纪下半叶,与詹姆斯·瓦特(James Watt)和引入煤炭动力蒸汽机有关。但是,工业革命并不是人类历史上唯一的重大能源转变:许多其他革命之前并遵循了它。能量历史因此是能量过渡的历史。实际上,我们目前正在发现自己处于这样一个过渡的中间:由于化石燃料的大量使用的环境后果变得越来越戏剧化,我们正在寻求从它们过渡到二氧化碳排放较低的能量来源。Earth,我们的家,已有45亿年的历史。 是由太阳星云的积聚形成的 - 圆盘形的气体和尘埃云层由太阳的形成造成 - 它缓慢冷却并最终变得可居住。 地球形成过程产生了我们今天使用的一些能源。 我们将在第24章中介绍的地热热部分是由于在平面形成过程中捕获的剩余热量。Earth,我们的家,已有45亿年的历史。是由太阳星云的积聚形成的 - 圆盘形的气体和尘埃云层由太阳的形成造成 - 它缓慢冷却并最终变得可居住。地球形成过程产生了我们今天使用的一些能源。我们将在第24章中介绍的地热热部分是由于在平面形成过程中捕获的剩余热量。我们将在第11章中返回的铀和th核燃料也与地球本身一样古老 - 它们大概起源于超新星的爆炸,这产生了形成我们太阳系的材料。像现代人类一样的人形生物最近出现在这段漫长的行星史上:它们最初是在东非的200万年前出现的。如果我们星球的整个4.5亿年历史都被凝结成24小时的时间范围,那么人类将在晚上11:59之后略微出现!从那里,它们遍及非洲大陆的其余部分,然后通过现代阿拉伯半岛进入欧亚大陆。美国是通过当时弗罗森(Bering)的弗罗森(Bering Land Bridge)到东北亚的,可能直至公元前20 000年。在我们历史的很长一段时间内,我们的祖先仅使用其肌肉提供的能量为所有日常活动提供动力。这种能量反过来来自消化的食物。这种能源消耗模式的第一个重大变化,因此是人类文明的。500 000年前,当我们的史前祖先学会了
艾伦古代 DNA 资源 (AADR):古代人类基因组精选概要 Swapan Mallick 1,2,3 、Adam Micco 1,3 、Matthew Mah 1,3 、Harald Ringbauer 4,5, 、Iosif Lazaridis 1,4 、Iñigo Olalde 1,6 Nick Patterson 2,4 和 David Reich 1,2,3,4 1 哈佛大学遗传学系医学院,波士顿,MA 02115,美国。 2 麻省理工学院和哈佛大学布罗德研究所,剑桥,MA 02142,美国。 3 霍华德休斯医学研究所,波士顿,MA 02115,美国。 4 哈佛大学人类进化生物学系,剑桥,MA 02138,美国。 5 马克斯·普朗克进化人类学研究所,莱比锡 04103,德国。 6 BIOMICs 研究小组,巴斯克大学,01006 维多利亚,西班牙。通信地址:shop@genetics.med.harvard.edu 和 reich@genetics.med.harvard.edu。已有两百多篇论文报告了古人类的全基因组数据。虽然绝大多数原始数据都是完全公开的,证明了古基因组学界对开放数据的承诺,但原始数据和元数据的格式各不相同。因此需要统一的管理和一个集中的、版本控制的汇编,供研究人员下载、分析和参考。自 2019 年以来,我们一直在维护艾伦古 DNA 资源 (AADR),旨在提供全球已发表古人类 DNA 数据的最新、精选版本,这些数据包含超过一百万个单核苷酸多态性 (SNP),几乎所有古代个体都经过了检测。自首次发布以来,AADR 已公开发布六次,并于 2022 年底突破了 10,000 多名拥有全基因组数据的古代个体的门槛。本文旨在作为 AADR 的可引用描述。第一批全基因组古代 DNA 数据于 2010 年发布 [1-3]。然而,直到 2015 年,随着全新世基因组大规模研究的出现、针对目标单核苷酸多态性 (SNP) 的古代 DNA 文库溶液中富集 [4-6] 以及用于处理古代 DNA 文库的自动化协议和液体处理机器人的引入 [7, 8],拥有全基因组数据的个体数量才开始迅速增加。2010 年至 2014 年间,每年平均发布约 10 名拥有全基因组数据的个体的数据。2015 年至 2017 年间,这一数字增加到每年约 200 人。自 2018 年以来,每年都有数千名个体的数据被发表(图 1)。迄今为止,古代 DNA 数据集中在欧亚大陆西部,但越来越多的数据来自世界其他地区(图 2)。分析古代 DNA 的一个挑战是个体分布在许多独立的研究中。因此,虽然超过 99% 的个体的原始序列数据在公共存储库中完全可用 [9],但上传的数据以多种格式存在,元数据也是如此,例如考古、年代、和地理信息。有些资源
几篇重要的论文研究了无政府状态的国家的出现,包括奥尔森(1993); Moselle and Polak(2001); Bates,Greif和Singh(2002)和Grossman(2002)。也有正式的模型在从弱提取状态到包容性机构的过渡的各个方面(Myerson,2008; Acemoglu和Robinson,2023)。这些模型捕获了垄断暴力的重要性,但没有明确描绘精英之间的议价。我们的模型捕捉了精英可以讨价还价和策略的想法,因此使我们能够将封建政治秩序描述为涉及合作和冲突的封建政治秩序。我们使用此框架来检查导致封建政体合并或分散的条件。在最近的贡献中,莱文(Levine)和莫迪卡(2022)开发了一种相互冲突的进化模型,它们适用于研究西欧历史上升。在Levine和Modica(2013)上建造,他们分析了商业和军事精英之间的冲突如何推动机构发展。后者占主导地位的,挖掘机构占上风。相比之下,前者占上风更多的机构是可行的。该框架的一个关键特征是它专注于权力平衡以及整个状态系统是否以具有包容性或提取机构的社会为特征。在他们的模型中,局外人的威胁以及盛行的军事技术的防御/进攻能力扮演着关键的角色。Levine和Modica(2022)发现了欧亚大陆历史上这些预测的支持。包容性国家之间的权力平衡要求局外人的威胁要强大,而防御性则相对较弱。我们在本文中的重点不是西欧的提升,而是在封建社会的基本政治经济学上的表征。我们构建了一个由一个领土精英进行的讨价还价游戏,其中有抱负的统治者提出了与其他精英的联盟。在联盟下,精英将她的所有资源(经济和军事)授予了统治者联盟,以换取在殖民地总资源中的份额。但是,这一承诺是没有约束力的,因为联盟的任何成员随后都可以叛逆并夺回她从最初的贡献中获得的一切。如果精英拒绝了该提议,则统治者试图在其联盟的一些关键成员的帮助下通过战斗迫使联盟。借用Ray(2007),我们将该集团称为“批准委员会”。 随着游戏的重复,每当玩家和平或通过征服者加入时,结合就会扩展,并且每当玩家叛军时收缩。 在平衡中,该领域要么被整合到一个大联盟中,要么保持零散。 关键决定因素是个人精英的支付成本,其资源以及这些资源是可符合的或不可申请的借用Ray(2007),我们将该集团称为“批准委员会”。随着游戏的重复,每当玩家和平或通过征服者加入时,结合就会扩展,并且每当玩家叛军时收缩。在平衡中,该领域要么被整合到一个大联盟中,要么保持零散。关键决定因素是个人精英的支付成本,其资源以及这些资源是可符合的或不可申请的
国际森林火灾新闻 (IFFN) No.37 (2008 年 1 月 - 12 月),第 88-102 页 ISSN 1029-0864 (网络) 德国勃兰登堡州森林火灾管理信息和决策支持系统的创新概念模型 摘要 德国自然灾害研究网络森林火灾集群内进行的研究和开发建立在一系列单独发展的概念之上,这些概念整合在一个合作研究项目中。森林火灾集群负责三个主要组成部分。第一个组成部分包括一个创新的概念模型,用于火灾信息系统和决策支持,用于德国勃兰登堡州松树林野火的预警、监测、信息管理和模拟。第二个组成部分提供了本地适用系统与全球火灾监测中心 (GFMC) 提供的全球火灾信息系统之间的链接。第三部分包括对区域气候变化导致的火灾发生的历史和未来趋势进行建模,由波茨坦气候影响研究所 (PIK) 的相关项目实施,并单独发布。第一部分由许多不同的模块组成。首先,它包括由火灾生态学研究小组实施的已建立的火灾行为模拟模型 (BEHAVE、FARSITE)。首次将火灾行为模型应用于德国东部大陆松树林的具体条件,包括散布的荒地,这些荒地在景观层面上构成了野火的重要载体。这些森林的特征对于欧亚大陆温带半北半球松树林来说非常典型。其次,它包括由德国航空航天中心 (DLR) 实施的火灾探测组件 (自动火灾探测系统 - AWFS)。AWFS 的开发满足了快速、经济高效和可靠的火灾探测系统的要求。第三,它包括由德国气象局 (DWD) 实施的火灾危险评级和预报系统。国家火灾危险评级系统在项目生命周期内得到了巩固。在研究项目期间,全球火灾监测中心 (GFMC) 的工作构成了从国家到国际层面的纽带。研究项目的附加值是各个研究项目的相互支持,并最终合并为一个全面的火灾管理决策支持工具。1.该研究项目获得的有关在活跃野火管理中卫星遥感信息的操作应用的见解将有助于开发急需的操作空间火灾系统。关键词:森林火灾、野火、决策支持、燃料分类、火灾行为、火灾天气、火灾探测、火灾建模、调度、遥感。简介 目前,德国勃兰登堡发生森林火灾的可能性很高,部分原因是降水量低、沙质土壤持水能力低以及普遍易燃的松树林的火灾危险,由于气候变化,这种可能性可能会进一步增加(Thonicke 和 Cramer,2006 年)。德国自然灾害研究网络 (DFNK) 内的“森林火灾”集群分析当前的火灾危险,并提供用于野火响应的高级操作决策支持所需的工具。该集群研究有三个主要组成部分。第一部分包括一个创新的概念模型,用于火灾信息系统和决策支持,用于德国勃兰登堡州松树林野火的预警、监测、信息管理和模拟。该组件包括由火灾生态学研究小组实施的已建立的火灾行为模拟模型 (BEHAVE、FARSITE)、由德国航空航天中心 (DLR) 实施的火灾探测组件 (自动火灾探测系统 - AWFS) 以及由德国气象局 (DWD) 实施的火灾危险评级和预报系统。第二部分提供本地
当您沿着蜿蜒的小路攀登到以色列的卡梅尔山洞穴时,很容易想象到史前时期的郁郁葱葱的环境。地中海气候四季温和宜人,温度波动适中。附近的小溪提供了可靠的饮用水源,而周围的森林里充满了野生动物,包括鹿、瞪羚、犀牛和野猪。相邻的山谷是史前谷物和果树的家园。卡梅尔山洞穴是数千年来众多狩猎采集者的理想场所,提供温暖气候、生态多样性和原材料的独特组合。该遗址现已被列为联合国教科文组织世界遗产,考古发现揭示了一系列跨越数十万年的史前定居点,智人和尼安德特人之间可能存在接触。随着人类进化的不断推进,我们的祖先掌握了新的技能,掌握了使用火的方法,并创造了越来越复杂的工具,这些工具由燧石和石灰石制成。这些进步背后的关键驱动力是人类大脑的显著增长和复杂性。人类大脑非同寻常,其体积大、压缩性强、复杂性是其他物种无法比拟的。在过去的六百万年里,人类大脑的体积增加了两倍,其中大部分转变发生在 20 万至 80 万年前。然而,这种增长并不是人类独有的;为什么我们发展出了如此先进的大脑,而其他物种却没有实现类似的认知飞跃?一种可能的解释是,拥有先进的大脑使我们能够实现地球上其他物种无法比拟的安全和繁荣水平。然而,现实情况更加复杂。趋同进化是一种现象,即相似的特征在不同物种中独立出现。例如,昆虫、鸟类、蝙蝠、鱼类和海洋哺乳动物都发展出了独特的体形,以在水下生存。然而,人类拥有独特的能力,可以创作复杂的艺术、文学和哲学作品,以及发明犁、轮子和互联网等技术——而这些技术在我们这个物种中只进化过一次。尽管有这么多优势,但为什么这种强大的大脑在自然界中如此罕见?答案部分在于两个主要缺点:它消耗大量能量(占身体总能量的 20%),而且大脑体积大,使分娩更加困难。因此,人类婴儿出生时大脑发育不全,需要数年才能成熟。这种脆弱性促使研究人员研究驱动大脑发育的力量。生态假说认为,环境压力推动了人类大脑的进化,因为我们的祖先适应了不断变化的气候和栖息地。那些拥有更高级大脑的人可以找到新的食物来源、制定策略并开发技术来生存。社会假说认为,复杂社会中合作、竞争和贸易的需求为那些拥有更复杂大脑的人提供了进化优势。此外,说服、操纵、奉承、讲述和取悦他人的能力(这些对于社会地位和生存都至关重要)刺激了大脑的发育和语言能力。文化假说强调了人类大脑吸收信息并将其代代相传的能力,这使得人类能够有效地从过去的经验中学习,并提高在不同环境中的生存能力。人类婴儿的身体无助掩盖了他们大脑独特的学习能力,这种能力使他们能够掌握和保留有助于生存的文化规范。性选择可能也发挥了一定作用,人类会偏爱拥有先进大脑的配偶,即使他们没有明显的进化优势。这些复杂的大脑可能发出了对保护和抚养孩子很重要的隐形品质,使潜在的伴侣更具吸引力。人类大脑的进化推动了人类独特的进步,推动了技术进步。这种迭代机制导致了技术越来越复杂,而这些技术反过来又塑造了未来的进化过程,使人类能够适应不断变化的环境并进一步发展他们的技术。值得注意的是,对火的掌握使早期人类能够烹饪食物,通过减少消化的能量消耗,释放颅骨空间,刺激了大脑的进一步生长。这种强化循环可能促进了烹饪技术的创新,从而导致大脑进一步发育。人类的手也随着技术的发展而进化,特别是狩猎工具和烹饪用具。当人类掌握了石雕和木矛制作技术后,熟练的猎人获得了进化优势,可以更可靠地养家糊口,并将更多孩子抚养成人。这种性质的正反馈循环在整个历史中都出现了:环境变化和技术创新促进了人口增长,并引发了对新栖息地和工具的适应;反过来,这些适应增强了我们操纵环境和创造新技术的能力。这个循环对于理解人类的旅程和解开成长之谜至关重要。数百万年来,人类以小群体的形式在非洲繁衍生息,不断提高技术、社交和认知能力。随着他们成为更熟练的狩猎者和采集者,他们的数量显著增加,最终导致生存空间和资源短缺。一旦环境条件允许,人类就开始向其他大陆扩张,寻找新的肥沃地区。大约两百万年前,第一个人类物种直立人传播到欧亚大陆。尽管早期智人确实走出了非洲,他们最终灭绝或因冰河时期恶劣的气候条件而撤退到非洲。大约 15 万年前,在非洲,所有现代人类的共同祖先出现了。这位非洲女性的血统最终催生了当今地球上的所有人类种群。被广泛接受的“走出非洲”理论认为,早在 6 万至 9 万年前,智人就大规模迁徙离开非洲,导致解剖学上的现代人类在全球传播。这些早期人类通过两条主要路线迁徙:一条经黎凡特,另一条经阿拉伯半岛。他们在 7 万多年前到达东南亚,大约 47,000-65,000 年前到达澳大利亚,近 45,000 年前到达欧洲,大约 25,000 年前到达白令海峡,并最终在大约 14,000-23,000 年前深入美洲。随着人类定居在新的环境中,他们获得了新的资源,并开始迅速繁衍。这种增长带来了更大的技术多样性,促进了创新和人口进一步扩张。然而,随着人口的增长,肥沃的土地和资源也越来越稀缺,最终迫使人类走向另一种生存方式:农业。智人的转变是惊人的。随着人们逐渐从游牧生活方式转向定居生活,全球的艺术、科学、写作和技术都取得了重大进步。值得注意的是,位于黎凡特的纳图夫文化(公元前 13,000-9500 年)的考古证据表明,一些社区在农业开始之前就过渡到永久性住所,这与传统理解相矛盾。尽管这些早期定居者主要是狩猎采集者,但他们住在稳定的住宅中,这些住宅由干石地基和灌木丛上层建筑建造而成。然而,对于当时的大多数人类来说,正是向农业的过渡推动了定居主义的发展。农业革命,又称新石器革命,最早出现在肥沃的新月地带——底格里斯河和幼发拉底河沿岸,一直延伸到埃及的尼罗河三角洲——那里繁衍生息着大量可驯化的动植物物种。这场革命迅速蔓延到整个欧亚大陆,因为它东西走向,便于动植物和技术的传播,没有遇到重大障碍。然而,撒哈拉以南非洲和美洲的可驯化物种较少,由于南北走向,这一转变发生得晚得多,导致不同地区之间的气候和土壤存在显著差异。撒哈拉沙漠和中美洲的热带雨林是阻碍这一传播过程的天然屏障。尽管存在这些挑战,这种转变——从狩猎采集部落到农业社会,从游牧生活方式到定居生活——在几千年的新石器革命期间传播到了人类的大部分地区。这一时期,人类在世界各地驯养了大量的野生动植物。为了像牛顿对物理学或达尔文对生物学那样彻底改变经济学领域,奥德·加洛尔的杰作《人类之旅》大胆尝试撰写人类的经济史。这本简明而全面的书跨越数千年,涵盖了全球历史,让人想起贾里德·戴蒙德的《枪炮、病菌与钢铁》和尤瓦尔·诺亚·哈拉里的《人类简史》。作者探讨了一些国家增长而其他国家停滞不前的原因,为人类从起源到现代世界的漫长历程提供了引人入胜的描述。这本书的范围和抱负无与伦比,提供了精妙、雄辩且博学的探索,探讨了当今国家之间惊人的贫富差距的原因。奥德·加洛尔的《人类之旅》全面介绍了全球经济史,为现代世界提供了独特的视角。本书深入探讨了影响人类进步的各种因素,包括教育、家庭规模和性别平等。这位学者是布朗大学著名的经济学教授,他开创了统一增长理论,探索人类历史上进步、繁荣和不平等的根本驱动因素。凭借一生积累的丰富知识,他与世界各地的知名观众分享了他的发现。他的最新作品《人类之旅》现已在全球以 28 种语言出版。本书深入探讨了影响人类进步的各种因素,包括教育、家庭规模和性别平等。这位学者是布朗大学著名的经济学教授,他开创了统一增长理论,探索人类历史上进步、繁荣和不平等的根本驱动因素。凭借一生积累的丰富知识,他与世界各地的知名观众分享了他的发现。他的最新作品《人类之旅》现已在全球以 28 种语言出版。本书深入探讨了影响人类进步的各种因素,包括教育、家庭规模和性别平等。这位学者是布朗大学著名的经济学教授,他开创了统一增长理论,探索历史上人类进步、繁荣和不平等的根本驱动因素。凭借一生积累的丰富知识,他与世界各地的知名观众分享了他的发现。他的最新作品《人类之旅》现已在全球以 28 种语言出版。
图 1.1. 1950 年至 2050 年全球人口增长前景(百万人) 图 1.2. 2022 年至 2050 年全球各地区人口前景(百万人) 图 1.3. 2022 年至 2050 年各地区人口变化前景(百万人) 图 1.4. 2022 年至 2050 年城镇人口前景(百万人) 图 1.5. 1990 年至 2050 年劳动年龄人口占比趋势(%) 图 1.6. 2022 年至 2050 年老年抚养比前景(%) 图 1.7. 2022 年至 2050 年家庭数量前景(百万家庭) 图 1.8. 2022 年至 2050 年 GDP 前景(实际万亿美元,基准年 = 2022 年) 图 1.9.人均 GDP 展望,2022-2050 年(实际 1,000 美元,基准年 = 2022 年) 图 1.10. 区域 GDP 增量增长展望,2022-2050 年(实际万亿美元,基准年 = 2022 年) 图 1.11. 长期 GDP 增长展望,2022-2050 年(实际万亿美元,基准年 = 2022 年) 图 1.12. 长期人均 GDP 增长展望,2022-2050 年(实际 1000 美元,基准年 = 2022 年) 图 2.1. 激励天然气政策的因素 图 3.1. 一次能源需求展望,2022-2050 年(百万吨油当量) 图 3.2. 全球一次能源结构展望,2022 年和 2050 年(%) 图 3.3. 2022-2050 年全球一次能源需求展望(百万吨油当量) 图 3.4。2022-2050 年全球石油需求展望(百万吨油当量) 图 3.5。2022-2050 年全球煤炭需求展望(百万吨油当量) 图 3.6。2022-2050 年全球核能需求展望(百万吨油当量) 图 3.7。2022-2050 年全球水电需求展望(百万吨油当量) 图 3.8。2022-2050 年全球可再生能源需求展望(百万吨油当量) 图 3.9。2022-2050 年全球生物能源需求展望(百万吨油当量) 图 3.10。2022-2050 年按终端使用部门划分的全球电力需求展望(TWh) 图 3.11。2022-2050 年全球发电量展望(TWh) 图 3.12。全球发电装机容量展望,2022-2050 年(GW) 图 3.13. 氢气需求展望,2022-2050 年(MtH2) 图 3.14. 氢气需求展望,2022-2050 年(MtH2) 图 3.15. 氢气发电展望,2022-2050 年(MtH2) 图 3.16. 氢燃料输入展望,2022-2050 年(Mtoe) 图 3.17. 氢气进口展望,2022-2050 年(MtH2) 图 3.18. 能源相关排放展望,2022-2050 年(GtCO2e) 图 3.19. 各地区在全球能源相关排放中的贡献,2022 年和 2050 年(%) 图 3.20. 2022 年和 2050 年人均能源相关二氧化碳排放量(吨二氧化碳/人) 图 3.21. 二氧化碳排放量按成分分解(1990-2021 年和 2022-2050 年) 图 3.22. 全球二氧化碳排放量展望,2022-2050 年(GtCO 2 e) 图 3.23. 能源强度改善展望(%) 图 3.24. 一次能源消费增长分解(1990-2021 年和 2022-2050 年) 图 3.25. 区域人均一次能源消费展望,2022 年和 2050 年(油当量/人) 图 4.1. 全球天然气需求,2010-2022 年(十亿立方米) 图 4.2. 全球天然气需求按区域展望,2022-2050 年(十亿立方米) 图 4.3. 2022-2050 年各行业天然气需求展望(十亿立方米)图 4.4。2022-2050 年非洲发电量展望(太瓦时)图 4.5。非洲天然气需求展望,2022-2050 年(十亿立方米) 图 4.6。亚太发电量展望,2022-2050 年(TWh) 图 4.7。亚太天然气需求展望,2022-2050 年(十亿立方米) 图 4.8。中国天然气需求展望,2022-2050 年(十亿立方米) 图 4.9。中国发电量展望,2022-2050 年(TWh) 图 4.10。印度天然气需求展望,2022-2050 年(十亿立方米) 图 4.11。印度发电量展望,2022-2050 年(TWh) 图 4.12。东南亚发电量展望,2022-2050 年(TWh) 图 4.13。欧亚大陆天然气需求展望,2022-2050 年(十亿立方米) 图 4.14。欧洲天然气需求展望,2022-2050 年(bcm) 图 4.15。拉丁美洲发电量展望,2022-2050 年(TWh) 图 4.16。拉丁美洲天然气需求展望,2022-2050 年(bcm) 图 4.17。中东发电量展望,2022-2050 年(TWh) 图 4.18。中东天然气需求展望,2022-2050 年(bcm) 图 4.19。北美天然气需求展望,2022-2050 年(bcm) 图 4.20。美国发电量展望,2022-2050 年(TWh) 图 5.1。各地区天然气储量,2000-2022 年(tcm) 图 5.2。各地区天然气产量展望,2022-2050 年(bcm) 图 5.3。 2022-2050 年各地区天然气供应增长前景(十亿立方米)