N-亚硝胺药物杂质是FDA关注的重点,尤其是由药物本身形成的亚硝胺杂质,称为N-亚硝胺药物相关杂质或NDSRI。杂质可以在药物生命周期的任何时间形成,例如作为合成副产物、在储存过程中以及在接受治疗的患者体内产生的NDSRI。使用突变试验可以识别可能增加癌症风险的N-亚硝胺杂质;具有致突变性的N-亚硝胺被认为是致癌物质,在药物中的含量被控制在非常低的水平。因此,FDA开发能够识别致突变N-亚硝胺的测试模型非常重要。DGMT科学家与药物评估和研究中心(CDER)亚硝胺药物杂质工作组合作,使用体外细菌和人类细胞突变试验评估一系列小分子N-亚硝胺和NDSRI的致突变性和遗传毒性。此外,还使用二维 (2D) 和三维 (3D) 人类肝细胞 (HepaRG) 模型测试了八种不同的 N-亚硝胺的遗传毒性。最后,对不同的 N-亚硝胺在转基因啮齿动物中的致癌性进行了评估。这些研究的目的是开发筛选和后续检测方法,以高置信度确定 N-亚硝胺药物杂质的癌症风险。以下出版物描述了这些研究的结果:Regul Toxicol Pharm 和 Arch Toxicol。
•分裂为确定中枢神经系统(CNS)毒性的最小侵入性标记导致有效的髓磷脂破坏模型的发展。该项目与代表监管机构的领先科学家的国际联盟合作,例如药物评估与研究中心(CDER),其他合作伙伴机构,例如疾病控制与预防和环境保护署中心,以及各种行业和药品伙伴。该项目的初始数据由2023年毒理学学会(SOT)年度会议提供,其中T 2磁共振成像(MRI)的敏感性在早期检测到Cuprizone诱导神经毒性的口服大鼠模型中CNS的灰质损害的早期检测中证明了这一点。
• 133 项测试 • 治疗药物监测 • 紧急毒理学测试 • 滥用药物:单目标和多目标 DOA 筛查 • 一般毒理学筛查:药物和滥用药物筛查、药物和杀虫剂筛查 • 有毒醇(乙二醇、甲醇) • 乙酰胆碱酯酶和胆碱酯酶 • 百草枯 • 氰化物 • 溶剂和其他挥发性物质 • 微量元素和有毒金属
在欧盟项目“再生”的背景下处理科学话题:欧盟项目涉及技术的发展,在侵犯大脑的情况下,包括可以通过中风或神经退行性疾病恢复,神经元丧失。重点是用于将CRISPR/DCAS9蛋白转移到神经元中的胶质细胞转移的非病毒措辞的生产和检查。作为您的论文的一部分,计划和进行体内毒性检查,以便能够获取有关新措辞的神经毒性和神经学变化的数据。
石棉因其独特特性而被广泛使用。众所周知,接触石棉会严重损害健康,但贵橄榄石仍在使用,因为一些国家认为它毒性较低且不具有生物持久性。本研究旨在探究在石棉纤维(最终浓度为50 μ g/ ml)、长贵橄榄石纤维(CHR-L)和短贵橄榄石纤维(CHR-S)存在的情况下,胎盘组织增殖、分化和细胞死亡背后的细胞过程是否会发生改变。本研究使用BeWo细胞系(一种模拟合体滋养层(STB)——胎盘绒毛外层的体外模型)进行研究。我们的数据表明,所有分析的纤维均不会改变合体滋养层细胞的形成,但所有纤维均会诱导活性氧(ROS)形成并降低细胞增殖。此外,我们还发现,只有CHR-L纤维诱导的纤维能够诱导不可逆的DNA改变,最终导致细胞凋亡。事实上,暴露于CHR-L纤维的BeWo细胞中,裂解的CASP3蛋白(一种细胞凋亡标志物)显著增加。这些数据表明,CHR-L可能诱导胎盘绒毛死亡,从而导致胎盘发育受损。胎盘发育受损是许多妊娠期疾病的根源,例如先兆子痫和宫内生长迟缓。由于这些疾病对胎儿和母亲的生命非常危险,我们建议妇科医生仔细评估母亲的居住区域、工作环境、日常饮食和使用的材料,尽可能避免接触这些纤维。
精子是在睾丸中形成的,但必须通过附睾过渡才能获得运动能力和受精的能力。附睾是一个单一的小管,其中包括几个在解剖学和生理上不同的基础。伪分层的上皮由多种细胞类型组成,包括主要细胞,透明细胞,狭窄细胞和顶端细胞,这些细胞与附子症的腔内齐聚。基底细胞存在于上皮的底部,其中包括巨噬细胞/单核细胞,单核吞噬细胞和T淋巴细胞的光环细胞也存在。这个综合精子成熟过程的几个方面已经建立了很好的确定,但是很多知识仍然很少。鉴于附睾的功能障碍与男性不育症有关,需要研究附睾功能的体外工具和附睾精子成熟。我们的实验室和其他人以前已经开发了人,大鼠和小鼠上皮细胞系,这些细胞系已用于解决某些问题,例如关于附睾中的junc蛋白的调节,以及北苯酚的毒性。鉴于附睾上皮包含多种细胞类型,但是,3D体外模型提供了一种更全面和现实的工具,可用于研究和阐明附子功能的多个方面。©2024作者。Wiley Perigonicals LLC发布的当前协议。本文的目的是提供有关大鼠附子基础细胞的大鼠附子器官的制备,维持,传代和免疫荧光染色的详细信息,我们已证明这是大鼠附子症中的一种成年干细胞。
有许多污染来源,包括农业径流,工业排放,污水和废水,溢油和塑料废物,可以污染水生生态系统(Banaee等,2019; Banaee等,2019; Banaee等,20222a,b)。未经处理的污水和废水排入河流,海洋可以引入有害的病原体,病毒和细菌,并导致水污染(Ji等,2021; Sun等,2022)。产生有毒化学物质,重金属或其他有害物质的行业可能会将这些物质排入邻近的水源,从而导致水污染(Derikvandy等,2020; Mozafari等,2023)。农药和肥料在农业中的施用会通过浸出和径流污染水源,从而导致水污染(Banaee等,2013; Banaee等,2023a,b)。不适当处置废物的垃圾填埋场
25个健康克隆28患病(> 30 AMD,4白白,1 Joubert,2 STAT3,2 Stargardt,2 L-ord)由> 2个实验室和½打公司复制
摘要:人为干预对环境健康产生了损害,增强了生态系统的降解,以及释放到自然的化学污染物的数量。因此,环境评估范围内的研究领域和监测(例如生态毒理学)有助于确定污染物的毒性潜力。一种被称为斑马鱼(Danio rerio)的小型塞普林剂,其使用呈指数成长,是科学研究的替代脊椎动物模型,主要用于评估环境风险。该物种在实验室中表现出几个优势,除了表现出多生物毒性的多种标志物外。因此,本综述旨在提出与该物种合作的主要特征和优势,并显示与涉及斑马鱼毒性生物标志物的生态毒理学有关的研究。结果表明,在环境风险分析中采用该物种的渐进趋势,在评估一系列化学污染物的毒性水平中,这是一种越来越推荐的物种。未来技术的发展必须有助于科学进步,从而使该模型生物的潜在应用变得更加广泛,这无疑将有助于弥合各个研究领域的知识差距。
沙利度胺及其衍生物是强效的癌症治疗药物,也是最容易理解的分子胶降解剂 (MGD) 之一。这些药物选择性地重新编程 E3 泛素连接酶 cereblon (CRBN),使靶蛋白被泛素-蛋白酶体系统降解。MGD 在 E3 连接酶表面产生新的识别界面,参与诱导的蛋白质-蛋白质与新底物的相互作用。对其作用机制的分子洞察为通过特定的识别基序 G 环与大量靶标进行接触提供了令人兴奋的机会。我们的分析表明,目前基于 CRBN 的 MGD 原则上可以识别人类蛋白质组中超过 2,500 种包含 G 环的蛋白质。我们回顾了在调整 CRBN 与其 MGD 诱导的新底物之间的特异性方面的最新进展,并推断出一组控制这些相互作用的简单规则。我们得出结论,合理的 MGD 设计工作将能够选择性降解更多的蛋白质,从而将这种治疗方式扩展到更多的疾病领域。
