饮食中的硒(] SE)主要通过其掺入硒蛋白中,在影响和免疫力中起着重要作用。足够的SE水平对于启动免疫力很重要,但它们也参与调节过度的免疫反应和慢性炎症。已经出现了有关单个硒蛋白在调节炎症和免疫力中的作用的证据,这为SE对这些过程的影响的机制提供了重要的见解。se的发音在激活,分化和增殖过程中会对免疫细胞产生负面影响。这与增加的氧化应激有关,但是在有效的条件下,免疫细胞中的其他功能(例如蛋白质折叠和钙)也可能受到损害。补充SE水平高于含量的饮食也会影响免疫细胞功能,某些类型的炎症和免疫力在某些情况下特别影响了SE水平的受影响和性二态效应。在这种综合性心中,讨论了SE和单个硒蛋白在调节免疫细胞信号传导和功能中的作用。特别强调了SE和硒蛋白如何与氧化还原信号传导,氧化爆发,钙环和随后的免疫细胞效应子功能相关。从细胞培养和动物模型中获得的数据进行了审查,并将其与涉及人类生理学和病理生理学的数据进行了比较,包括SE水平对包括抗病毒免疫,自身免疫性,脓毒症,败血症,过敏性哮喘,急诊哮喘,和慢性疾病性疾病(包括抗病毒免疫力)的炎症或免疫相关疾病的影响。抗氧化。氧化还原信号。最后,讨论了对各种炎症或免疫疾病的补充的干预措施的利益和潜在的不利影响。16,705–743。
甲状腺素的治疗指数较窄。适当的甲状腺素剂量取决于临床评估和甲状腺功能测试的实验室监测。在初始滴定期间,必须仔细滴定和监测剂量,以避免治疗不足或过度的后果。甲状腺素剂量过大的症状与内源性甲状腺毒症的许多特征相同。治疗前心电图很重要,因为甲状腺功能减退引起的变化可能与缺血的心电图证据混淆。如果代谢增加过快(引起腹泻、紧张、脉搏加快、失眠、震颤,有时在存在潜在心肌缺血的情况下出现心绞痛),必须减少剂量或暂停用药一两天,然后以较低的剂量重新开始用药。对于年轻患者,如果没有心脏病,血清左旋甲状腺素 (T4) 水平应保持在约 70 至 160 纳摩尔/升,或血清促甲状腺激素水平应低于 5 毫单位/升。对于 50 岁以上和/或患有心脏病的患者,临床反应可能是比血清水平更可接受的剂量标准。对于使用左旋甲状腺素和已知干扰剂的患者,给药应至少间隔 4 小时(见第 4.5 节与其他药物的相互作用和其他形式的相互作用)。剂量成人最初每天 50 至 100 微克,每隔 4 至 6 周调整 50 微克,直到稳定维持正常代谢。这可能需要每天 100 至 200 微克的剂量。 50 岁以上、年老或患有糖尿病或心脏病的患者 对于 50 岁以上的患者,最初不建议每天服用超过 50 微克。如果患有心脏病,则更适合服用 25 微克,隔天服用 50 微克。在这种情况下,每日剂量可以缓慢增加 25 微克(隔天服用 50 微克),间隔大约四周。此给药方案如下表 1 所示。表 1 – 左旋甲状腺素片的推荐给药方案
摘要:伤口感染常见于手术和创伤后,但很难诊断,而且客观临床参数定义不明确。伤口中的细菌与感染相关的假设是错误的;所有伤口都含有微生物,但并非所有伤口都受到临床感染。这使得临床医生很难确定真正的伤口感染,尤其是对于有致病生物膜的伤口。如果感染未得到适当治疗,致病毒力因子(如铜绿假单胞菌中的鼠李糖脂)会调节宿主的免疫反应并导致组织破坏。如果微生物深入宿主组织,则会导致危及生命的脓毒症。本文介绍了针对伤口中常见的五种重要临床微生物病原体的传感器开发:金黄色葡萄球菌、铜绿假单胞菌、白色念珠菌/耳念珠菌和粪肠球菌(SPaCE 病原体)。传感器包含封装自淬灭荧光染料的脂质体。SPaCE 感染病原体在早期感染伤口中表达的毒素会分解脂质体,触发染料释放,从而使传感器颜色从黄色变为绿色,这表明感染。五种临床细菌和真菌,每种多达 20 种菌株(共计 83 种),在猪烧伤离体伤口中生长为早期生物膜。然后擦拭生物膜,并将拭子放入脂质体悬浮液中。对猪伤口生物膜中选定病原体的种群密度进行了量化,并与比色反应相关联。超过 88% 的拭子打开了传感器(10 7 − 10 8 CFU/拭子)。一项初步临床研究表明,传感器开启与早期伤口感染之间存在良好的相关性。关键词:细菌感染、即时护理、伤口、生物膜、感染检测、脂质体、荧光染料
Luregan J. Schlapbach,医学博士; R. Scott Watson,医学博士,MPH;劳伦·R·索尔斯(Lauren R. Sorce)博士,RN; Andrew C. Argent,医学博士,MBCH,MMED;医学博士Kusum Menon,MSC;马克·霍尔(Mark W. Hall),医学博士; Samuel Akech,MBCHB,MMED,博士; David J. Albers博士;伊丽莎白·R·阿尔珀恩(MSCE);医学博士Fran Balamth,MSCE; Melania Bembea,医学博士;医学博士Paolo Biban; Enitan D. Carrol,MBCHB,医学博士;医学博士Kathleen Chiotos; Mohammod Jobayer Christi,MBBS,MMED,博士;彼得·E·德威特(Peter E. Dewitt),博士;伊德里斯·埃文斯(Idris Evans),医学博士,MSC; CládioFlauzinode Oliveira,医学博士;克里斯托弗·霍瓦特(Christopher M. Horvat),医学博士,MHA; David Inwald,MB,博士;保罗·伊西米米(Paul Ishimine),医学博士; Juan Camilo Jaramillo-Bustante,医学博士;迈克尔·莱文(Michael Levin),医学博士; Rakesh Lodha,医学博士;医学博士Blake Martin; Simon Nadel,MBBS;马里兰州Satoshi Nakagawa;马克·J·彼得斯(Mark J. Peters),博士; Adrienne G. Randolph,医学博士,MS; Suchitra Ranjit,医学博士;玛格丽特马萨诸塞州的让伯;塞思·罗素(Seth Russell),女士;医学博士Halden F. Scott; Daniela Carla de Souza,医学博士; Pierre Tissiers,MD,DSC; MSCE医学博士Scott L. Weiss; Matthew O. Wiens,Pharmd,PhD; James L. Wynn,医学博士;医学博士Niranjan Kissoon; Jerry J. Zimmerman,医学博士; L. Nelson Sanchez-Pinto,医学博士; MS的Tellen D. Bennett,医学博士;对于重症监护社会,医疗小儿脓毒症定义工作队 div>
败血症期间血液中的CfDNA增加可能是从各种类型的细胞死亡(凋亡和坏死)或细胞损伤中释放出来的(41,42),这在败血症发病机理中是关键作用(43)。然后,cfDNA的丰度可能是败血症诱导的细胞损伤的良好指标,从理论上讲,这与败血症的严重程度相关。的确,由于败血症24小时内CFDNA水平的差异,我们的荟萃分析确定了中等的确定性。与非盐对照或SIRS(ICU病例)相比,败血症患者的CFDNA不仅增加了CFDNA,而且与败血症幸存者相比,CFDNA在脓毒症非活体中也升高。有趣的是,即使在ICU的最早阶段或入院阶段(可能是败血症发作的最接近时间)的CFDNA水平,也能够预测死亡率,如汇总的AUC预测为0.76(95%CI 0.64-0.87)所示);诊所使用的可接受价值(44)。此外,与CFDNA较低的患者相比,入院时最初具有高CFDNA的患者与死亡率更高(28,32)。与没有败血症(ICU病例)的败血症和感染之间的区分(0.80),合并灵敏度(0.81),汇总特异性(0.72)(0.72)和计算DOR(25.03),指示CFDNA作为良好的诊断生物标志物,用于实践(45,46)。较高的CFDNA(与对照组相比)在SIRS患者中,尽管没有可检测到的病原体,但在短期随访期后可能是快速发展成为败血症的早期迹象(23,48)。然而,在败血症与SIRS之间的亚组分析中,败血症歧视的CF-DNA的能力降低了,这是由AUC从0.80(败血症与非sepsis ICU)汇总的0.75(ICU中的Seppsis vs. ICU中的Sirs vs. Sirs vs. ICU中)的代表,支持Sepraps sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis spepis sepis specis spepis specis(47)。同样,某些败血症患者的CFDNA水平较低可能与
患者接受过五种药物治疗(68.8%),且对三类药物有抵抗(77.9%)。既往治疗包括抗 CD38(93.5% [83.1% 难治];dara(90.9% [80.5%])、IMiD(100% [97.4%];pom,83.1% [75.3%])、嵌合抗原受体-T 细胞(31.2%)和 BsAb(39.0% [37.7%])疗法。dara 组距上次暴露的中位时间为 474 天(d),pom 组距上次暴露的中位时间为 385 天。没有剂量限制性毒性。所有患者均有 ≥1 个 AE(94.8% 级别 [gr] 3/4),最常见的是味觉障碍(79.2%;NA gr 3/4)、中性粒细胞减少症(77.9%;68.8% gr 3/4)、CRS(74.0%;所有 gr 1/2)、口干(64.9%;2.6% 3/4 级)和疲劳(57.1%;5.2% 3/4 级)。CRS 发病时间中位数为治疗后 1 天;中位持续时间为 2 天。ICANS 发生率为 3.9%(3/4 级 1.3%)。感染发生率为 74.0%(29.9% 3/4 级);大多数 3 级以上感染发生在前 6 个月内(18/23 起事件)。5.8% 的患者因 AE 停止治疗。两名患者出现 5 级 AE(脓毒症和出血性转化性中风)。ORR 为 81.8%;53.2% 的患者完全缓解或更好。中位 DOR 为 22.1 个月(95% CI,13.6–27.0)。首次缓解时间中位数为 1.0 个月(范围, 0.9–6.7)。中位 PFS 为 15.5 个月(95% CI,11.7–24.4)。在抗 CD38 耐药和先前接受过 T 细胞重定向治疗的患者中,反应深度和持久性。初步数据显示,tal 血清浓度通常与 tal 单药治疗在同一范围内。结论:在接受过大量治疗的 RRMM 患者中,这些患者大多对 dara 和 pom 耐药,tal+dara+pom 显示出良好的反应深度和持久性。安全性与每种药物已知的安全性一致。结果支持 tal 作为组合伙伴的多功能性,并值得进一步研究 tal 与 dara 或 pom 的联合使用。
败血症是一种威胁生命的疾病,原因是对感染的免疫反应失调,这会导致一系列器官功能障碍[1,2]。尽管败血症近年来受到了越来越多的关注,但它仍然是全世界的一个主要公共卫生问题,并且具有高度的生活和死亡率[3]。败血症诱导的心肌损伤(SIMI)是败血症的常见并发症,是败血症患者的重要死亡原因[4,5]。但是,对SIMI的研究仍然有限,其临床治疗也缺乏专家的共识。因此,有必要探索SIMI的有效治疗方法。shenfu注射(SFI)是治疗败血症具有良好治疗作用的有效药物。它是从富兹(Aconiti helfaris radix praeparata)和Hongshen(Ginsen Radix et Rhizoma rubra)中提取的,并来自传统的中国药物(TCM)处方药。许多临床和实验研究表明,SFI可以有效地改善败血症的血液动力学[6],调节免疫功能[7-9]并改善临床预后[6,7,9]。此外,SFI可以抑制心肌细胞的凋亡,减少炎症反应并防止SIMI [10-12]。基于50项研究(3394名参与者)的元分析表明,与其他TCM注射相比,SFI在减少脓毒症患者的炎症和改善死亡率方面表现出色[13]。与常规医疗相比,SFI与常规医疗相结合可以增强免疫功能并改善败血性休克的预后[14,15]。此外,使用198只小鼠的动物实验研究表明,SFI在SIMI中的疗效与地塞米松的功效相似[16]。尽管许多证据支持SFI对SIMI具有良好的治疗作用,但由于TCM的多组分,多目标,多目标和多条纹特征,SFI的特定治疗机制仍不清楚,这限制了其临床应用和开发。因此,我们使用网络药理学探索SFI治疗SIMI的活性化合物和治疗机制。网络药理学结合了传统的药理学,计算机技术和其他学科,这些药理学,计算机技术和其他学科可以显示“药物化合物 - 靶向疾病”网络,进一步证明了药物与疾病之间的相互作用[17]。这项研究使用网络药理学来探索SIMI中SFI的治疗机制,并通过分子对接和实验对其进行了验证。
传染病每年导致全球超过 1700 万人死亡。[1] 当病原体进入宿主时,细胞因子和趋化因子充当宿主组织细胞和免疫系统之间信息交换的介质。[2] 多项研究报告称,在感染的早期阶段,血液中的促炎趋化因子会升高 [3,4],包括目前正在发生的 COVID-19 大流行。[5,6] 感染事件后细胞因子和趋化因子积累的时间曲线决定了宿主内感染的时间进程和严重程度。因此,监测细胞因子和趋化因子的时间曲线有助于症状前检测和患者分层,从而实现循证临床管理。干扰素诱导蛋白 (IP-10) 和肿瘤坏死因子相关凋亡诱导配体 (TRAIL) 与 C 反应蛋白 (CRP) 结合被认为是病毒或细菌感染患者高度相关的生物标志物。[7,8] 据报道,在细菌和病毒感染期间,这些生物标志物的血液水平会升高,从而导致包括脓毒症和急性呼吸窘迫综合征在内的严重疾病。[9] Oved 等人描述了 IP-10、TRAIL 和 CRP 的组合作为确定和分类细菌或病毒感染的分类方法。[7] 据报道,COVID-19 阳性患者的 IP-10 水平也有所升高。[10,11] 此外,在由 SARS CoV、SARS CoV2 和中东呼吸综合征 (MERS) 冠状病毒引起的严重急性呼吸综合征 (SARS) 中也观察到了 IP-10 水平升高。 [6,12—14] IP-10 被认为是呼吸道感染的明确标志,因为肺上皮气道细胞是 IP-10 的主要产生者。[13,14] 图 1 A 概述了涉及上皮细胞中 IP-10 产生的信号通路,该通路导致激活细胞防御。在受感染的宿主中,模式识别系统导致干扰素-γ 和肿瘤坏死因子-α (TNF-α) 的刺激,这反过来又通过 JAK/STAT1 机制导致 IP-10 的释放。[15] 这种机制激活 T h1 细胞对病原体攻击的先天免疫力。[16,17] TRAIL 在免疫疗法中起关键作用,在诱导细胞凋亡方面至关重要。[18,19] 图 1B 提供了
广义的“炎症”涵盖了一系列不同的组织反应,这些反应通常由微生物识别和组织损伤引发。1,2 最近,人们认识到,从糖尿病到肥胖症等代谢异常情况会引起明显或亚临床的炎症反应。炎症反应的一般作用是增强先天抵抗力和组织修复,从而恢复体内平衡(图 1A)。炎症的全身表现包括发烧、白细胞计数改变、心血管反应、内分泌反应和代谢重新定位,同时还会导致一系列称为急性期蛋白的分子产生增加。4,5 原型急性期蛋白 C 反应蛋白最初被描述为存在于感染患者循环中的一种分子,它能够识别肺炎链球菌的 C 型多糖。 6,7 血液和其他体液中急性期蛋白水平升高(图 1B)是局部炎症或全身炎症(如脓毒症)的更复杂反应的一部分,被称为急性期反应,5 其特征是肝细胞白蛋白生成减少、铁代谢重新定位和激素变化。4,5 在慢性炎症和亚临床炎症的背景下也观察到了这些改变。在 C 反应蛋白发现近一个世纪后,急性期蛋白继续作为基本的诊断工具,应用于感染、心血管疾病、癌症、神经退行性疾病和代谢异常等一系列疾病的患者。 8-10 在 2019 年冠状病毒病 (Covid-19) 大流行期间,C 反应蛋白、纤维蛋白原及其降解产物 d -二聚体和铁蛋白等急性期蛋白在日常疾病管理和预后指标中发挥了重要作用 (表 1)。在剖析其中许多分子的产生、结构和功能方面已经取得了进展,研究结果表明急性期反应的基本功能是增强抗菌素耐药性和组织修复,而许多急性期蛋白是体液先天免疫(“前抗体”)的关键组成部分。25 从这个总体角度来看,我们回顾了某些急性期蛋白的产生、结构和功能的关键方面,这些蛋白仍然是支柱诊断工具,可以更系统地整合到最近从转录组和蛋白质组学谱中出现的分子特征中。
抽象的中性粒细胞是人类中最丰富的白细胞,在先天免疫中起关键作用,迅速迁移到Infecfon的部位,并在炎症剂中呈吞噬剂,中和,中和并消除了入侵的病原体。中性粒细胞外陷阱(净)对病原体的响应越来越多地被认为是一种先天性的先天免疫反应,但是当失调的失调会导致败血症和自身免疫性疾病的发病机理。当前的Netosis模型受到限制,使用了可以绕过天然净监管途径的非生理触发器。模型化了分离的嗜中性粒细胞和永生的细胞系,在全血环境中发生了嗜中性粒细胞ACFVAFON和NETOSOS的复杂生物学。在这里,我们使用NAFVE Netosis诱导的NAFVE Netosic诱导因子的组合合并在更具生物学相关的SyntheFC-Sepsis™模型中,描述了一种新型的,高通量的外血液诱导的Netosis模型。我们发现,在净gentafon和/或netosis的幅度的情况下,诱发了disfnct中性粒细胞反应的因素不同的组合。尽管供体变异性,但相似的pro弹性分子集可引起供体的一致反应。我们发现至少三个生物触发因素是在需要TNF-α或LT-α的系统中诱导Netosis。据我们所知,我们报告了第一个人类的前体内模型,使自然存在的分子升高,以诱导全血中的Netosis。这种方法可用于药物筛查,重要的是,Netosis的无意激活剂。快速识别和Intervenfon是避免发展为Sepfc冲击和死亡的crifcal。t hese发现在生物学相关的环境中,InvesFGAFNG生理学的重要性,以使Bexer对疾病病理学,危险因素和治疗性靶标有巨大的理解,可促进疾病的新策略,以提供新的策略。引入败血症引起的宿主对Infecfon的反应失调,并且在美国每年有170万成年人的影响[1,2]。尽管有卫生保健的进步,但败血症仍然是全球重大的健康负担。迫切需要新的策略来揭示脓毒症病理生理学的复杂性并开发更多的ECFVE诊断工具和治疗方法。
