在室温下制备 p 型氧化锡 (SnO) 薄膜对传统方法提出了重大挑战,这主要是由于 SnO 的电各向异性和亚稳态。由于这种各向异性,在 SnO 中产生具有最佳迁移率的有效空穴载流子需要细致的热退火,但这受到 SnO 亚稳态的制约。在这项工作中,我们采用离子束辅助沉积 (IBAD) 在室温下制备 p 型 SnO 薄膜。这些薄膜具有纳米晶结构,表现出良好的电学性能,霍尔迁移率为 2.67 cm2V-1s-1,空穴浓度为 5.94×1017cm-3,尤其是无需退火处理。我们的研究揭示了霍尔迁移率和载流子浓度随 IBAD 过程中氩气流量变化而呈现的独特火山形趋势。这种关系与薄膜的光学性质、结构相和化学状态的变化相关,对于理解室温制备的 SnO 薄膜中 p 型导电性的起源至关重要——这一主题在当前文献中仍未得到解决。我们观察到迁移率增强与晶格无序性降低之间存在直接相关性,而空穴载流子浓度增加与氧间隙形成之间存在很强的相关性。我们还强调,中间相组成在确定 SnO 薄膜的无序程度方面起着至关重要的作用,这对于创建传输路径和空穴载流子形成所需的氧环境至关重要。这些见解有助于指导室温制备的 p 型 SnO 薄膜的设计和表征,从而推动大面积柔性电子领域的进步。
目的:牙根管的复杂结构有助于细菌在标准根管治疗难以触及的隐蔽区域定植和形成生物膜。本综述旨在总结体外和离体研究的数据,以更好地了解冷常压等离子体 (CAP) 在牙根管消毒中的应用。方法:筛选 PubMed、Scopus 和 Web of Science 数据库。提取纳入研究的特征,并对离体研究进行荟萃分析,以评估 CAP 对粪肠球菌 (E. faecalis) 菌落形成单位测定的影响。该研究遵循 PRISMA 2020 指南进行。结果:共有 31 项研究符合选择标准。只有 2 项研究报告了间接等离子体治疗,28 项试验使用直接 CAP 给药,而 1 项研究同时采用了这两种方法。大多数研究都是针对粪肠球菌进行的,使用氦气或氩气作为载气,或与氧气和空气结合使用。研究发现,不同研究对不同来源、设置和应用方案的处理存在相当大的异质性。尽管如此,CAP 仍显示出减少粪肠球菌菌落形成单位的有效性,标准化平均差异为 4.51,95% CI = 2.55 – 6.48,p 值 < 0.001。结论:数据表明直接使用 CAP 对微生物具有抗菌作用。体外研究表明,效果取决于治疗的时间和距离,而对体外研究进行的荟萃分析表明,CAP 的效果与时间和距离无关。
摘要:脱碳是材料表面在高温氧化环境中发生的一种不希望出现的碳损失现象。钢在热处理后的脱碳问题已被广泛研究和报道。然而,到目前为止,还没有关于增材制造零件脱碳的系统研究。电弧增材制造 (WAAM) 是一种生产大型工程零件的高效增材制造工艺。由于 WAAM 生产的零件通常尺寸较大,因此使用真空环境来防止脱碳并不总是可行的。因此,有必要研究 WAAM 生产零件的脱碳问题,尤其是在热处理工艺之后。本研究使用打印材料和在不同温度(800 ◦ C、850 ◦ C、900 ◦ C 和 950 ◦ C)下热处理不同时间(30 分钟、60 分钟和 90 分钟)的样品研究了 WAAM 生产的 ER70S-6 钢的脱碳情况。此外,使用 Thermo-Calc 计算软件进行数值模拟,以预测钢在热处理过程中的碳浓度分布。发现脱碳不仅发生在热处理样品中,而且发生在打印部件的表面上(尽管使用氩气进行保护)。发现脱碳深度随着热处理温度或持续时间的增加而增加。在最低温度 800 ◦ C 下仅热处理 30 分钟的部件具有约 200 µ m 的较大脱碳深度。对于相同的 30 分钟加热时间,温度从 150 ◦ C 升至 950 ◦ C,脱碳深度急剧增加 150% 至 500 µ m。这项研究很好地证明了需要进一步研究以控制或最大限度地减少脱碳,从而确保增材制造工程部件的质量和可靠性。
摘要:脱碳是材料表面在高温氧化环境中发生的一种不希望出现的碳损失现象。钢在热处理后的脱碳问题已被广泛研究和报道。然而,到目前为止,还没有关于增材制造零件脱碳的系统研究。电弧增材制造 (WAAM) 是一种生产大型工程零件的高效增材制造工艺。由于 WAAM 生产的零件通常尺寸较大,因此使用真空环境来防止脱碳并不总是可行的。因此,有必要研究 WAAM 生产零件的脱碳问题,尤其是在热处理工艺之后。本研究使用打印材料和在不同温度(800 ◦ C、850 ◦ C、900 ◦ C 和 950 ◦ C)下热处理不同时间(30 分钟、60 分钟和 90 分钟)的样品研究了 WAAM 生产的 ER70S-6 钢的脱碳情况。此外,使用 Thermo-Calc 计算软件进行数值模拟,以预测钢在热处理过程中的碳浓度分布。发现脱碳不仅发生在热处理样品中,而且发生在打印部件的表面上(尽管使用氩气进行保护)。发现脱碳深度随着热处理温度或持续时间的增加而增加。在最低温度 800 ◦ C 下仅热处理 30 分钟的部件具有约 200 µ m 的较大脱碳深度。对于相同的 30 分钟加热时间,温度从 150 ◦ C 升至 950 ◦ C,脱碳深度急剧增加 150% 至 500 µ m。这项研究很好地证明了需要进一步研究以控制或最大限度地减少脱碳,从而确保增材制造工程部件的质量和可靠性。
摘要。使用Magnetron-ION溅射,将一层金属钼1–2μm厚的金属钼沉积在环境温度下惰性氩气的大气中,该硅通过Czochralski方法生长的硅单晶表面。根据实验的结果,纯Mo层厚度为2μm,通过磁控蛋白的反应性溅射从高度纯的金属钼靶中沉积到冷硅晶片底物上,厚度为1.5 mm。仅在严格定义的钼金属沉积速率对应于体积中给定的巨质压力的情况下,它们的电导率和透明度也很高。溅射目标是直径为40 mm的磁盘,厚度为3-4 mm。产品处理的技术周期包括目标清洁的阶段。在不添加氧气的情况下将金属MO靶标溅射在纯氩AR中,可以促进具有非常好的电导率的不透明金属膜的形成。X射线衍射分析具有Mo金属涂层表面的硅单晶体显示了Moleybdenum-Silicon系统中的MO3SI和MOSI.65的化合物。硅硅硅酸盐被发现在温度范围1850÷1900°C的温度范围内经历同类肌转化,而低温品种 -MOSI2具有四方结构。 -MOSI2的高温形式具有六边形结构。使用原子扫描显微镜进行研究的结果表明,硅原子的链与MO原子连接,形成沿平行X和Y轴的MO结构的棱镜形成的锯齿形。
同意与我们已经测量的GHz 10相对应的微波炉时期的数量级。在图S1(c)中可以反映t对ϵ Q的弱依赖性,因为相对于NIR脉冲,mir激光脉冲通常较小(因此频率更高)。这种简单的计算仅是为了插图,而忽略了电子碰撞和由于电子从等离子体表面的偏移而产生的静电场,从而使其带来正电荷。在单个pi-cosecond时标(例如,参见[12])上,都出现在单个pi-cosecond时标上的胶率和等离子频率(等离子体对电荷分离的响应率),这意味着应强烈抑制膨胀波。此外,大多数电子在激光场振荡的峰值附近出生冷,尽管在等式中引用了流体动力学概念,但在ϵ Q的阶数的人口比例很小。S3和S4。准确计算少量能量在ϵ Q处的电子如何转化为纵向表面电流和微波辐射,将需要对系统的完全动力学描述,在实践中,这意味着粒子中的粒子(PIC)模拟,对系统的空间和时间大小。通过在高压气体中NIR激光脉冲的燃料产生的血浆的最新理论分析发现,正如我们在这里提出的那样,电子群体的热膨胀会导致产生径向电气场[13]。模型仅解释了径向尺寸,并且在60个气氛下而不是在一种大气中的空气中为氩气而制作量。然而,它表明激光脉冲的PASAGE后血浆动力学和碰撞动力学并非乏味,因为在等离子体的时间演变中存在多个阶段。
通过2D材料的远程外观远处为研究和应用打开了新的机会,克服了经典外观的某些局限性,并允许创建独立层。然而,将石墨烯作为金属氧化物远程外观的2D中间剂具有挑战性,尤其是当通过脉冲激光沉积(PLD)进行时。石墨烯层可以很容易地在通常施加的高氧气压力下氧化,并且血浆羽流的高度动力学颗粒的影响会导致严重的损害。在这项研究中,解决了这两个方面:氩气被作为惰性背景气体引入,以避免氧化并减少血浆物种对石墨烯的动力学影响。激光斑点尺寸被最小化以控制等离子体的羽流和颗粒通量。作为模型系统,钛酸锶(Sto)是在石墨烯缓冲的STO单晶上生长的准同性恋。拉曼光谱法以评估石墨烯层的2 d,g和d带指纹,并评估沉积后层中层的缺陷结构。我们的结果证明,通过降低激光斑点大小和使用高氩增压提供了对生长动力学的控制,这提供了一种关键策略,以保存PLD期间缺陷密度低的石墨烯,同时允许结构相干氧化物层的一层生长。该策略可能会概括为许多复杂氧化物的PLD远程外延,为使用广泛可访问的PLD工艺将2D材料与复杂氧化物集成开辟了道路。
摘要 本研究致力于将通过硬模板法制备的中孔-大孔 SiO 2 块体碳材料的纳米级孔隙空间与相应的纳米级多环芳烃微结构连接起来,使用两种不同的碳前体,即可石墨化沥青和不可石墨化树脂,这两种碳前体通常表现出明显不同的碳化特性。通过与典型的气体吸附物 (Ar) 相比,相对较大的有机分子 (对二甲苯) 的吸附行为研究了这些块体碳材料的微孔和中孔率。此外,为了详细了解纳米孔隙空间,应用了小角度中子散射 (SANS) 结合原位物理吸附,在中子散射过程中使用氘代对二甲苯 (DPX) 作为对比匹配剂。通过 SANS 和广角 X 射线散射 (WAXS) 的特殊评估方法,分析了碳前体对碳微结构尺寸和无序性方面的原子尺度结构顺序、纳米孔结构和模板过程的影响。WAXS 分析表明,与单块树脂相比,沥青基单块材料表现出更有序的微观结构,由更大的石墨烯堆叠和相似的石墨烯层尺寸组成。另一个主要发现是,在两种不同的碳前体沥青和树脂中发现的氩气和氘代对二甲苯之间的可及微孔/中孔率存在差异,而沥青和树脂通常可被视为具有代表性的碳前体。这些差异本质上表明,如果使用探测气体(例如 Ar 或 N 2)进行物理吸附来评估纳米级孔隙空间的可及性,则可能会提供误导性参数。
摘要:减少的氧化石墨烯(RGO)是一种具有许多潜在应用的高度有希望的材料。各种碳源可用作生产RGO的起始材料。这项研究探讨了甘蔗渣(SB)的利用,甘蔗(SB)是一种全球丰富的农业废料,是RGO合成的先驱。最初,在流动的氩气下以10°C/min的速度以10°C/min的速度在750°C下进行热解,以提取石墨相。然后使用悍马的方法将提取的石墨转换为氧化石墨烯(GO)。使用金属锌(Zn)作为还原剂,将GO产物进行超声处理,以在还原为RGO之前打破氧官能团。通过XRD和FTIR分析确认了从石墨到GO的每个合成步骤,从石墨到RGO的每个合成步骤的石墨变换。此外,拉曼光谱法进一步证实了RGO的形成,该光谱显示了RGO相的特征D,G和2D频段。sem显微照片揭示了RGO的形态,作为片状2D多层纳米片,薄板厚度为几百nm。这项研究还研究了Zn粉末浓度对形成RGO的GO的影响。发现适当的锌量对于RGO合成至关重要,因为过量量导致RGO样品中存在Zn残基。这些发现提出了一种直接有效的方法,可以从甘蔗渣拿起RGO准备RGO,可以将其扩展为工业生产。此外,对RGO样品的电化学性质的研究显示,在优化的合成条件下,包括较大的表面积,高特异性电容,电导率和良好稳定性。这将SB产生的RGO样品定位为超级电容器应用的有前途的电极材料。
有机分子晶体,例如对苯二酚笼状物,可能是很有前途的储氢材料。笼状物是由客体分子(这里是 H 2 )和形成空腔的宿主分子组成的超分子化合物。对苯二酚 (HQ) 与气体(例如 CO 2 1 或 CH 4 2 )的形成在文献中是众所周知的。但是,对于氢气捕获,一些重要的限制限制了这种材料的发展,例如高压和低笼状物形成动力学。Han 等人 3 通过预先形成无客体结构,然后在 350 bar 下用 H 2 填充它,获得了氢 HQ-笼状物。人们还进行了其他尝试来提高对苯二酚笼状物的存储容量,例如添加 C 60 4,但迄今为止尚未发现最佳系统。本研究开发的策略是将对苯二酚浸渍在多孔材料的微孔内,以利用限制效应来启动限制包合物的形成并改善包合动力学。为此,开发了一种新颖的浸渍方法,并在几种具有不同化学性质(碳、聚合物、二氧化硅)和不同孔径(1 至 15 纳米之间)的材料上进行了测试。使用 TGA-DSC、氩气孔隙率仪和 MAS-NMR 来表征新型复合材料。有机晶体的浸渍率可达到混合材料质量的 35%。用磁悬浮天平测量氢的存储容量。对于浸渍在多孔聚苯乙烯基材料中的 HQ 的情况,通过将温度在 0 到 100°C 之间循环可以达到 HQ 包合物的形成。在 20 bar 氢气压力下,经过 10 个温度循环,样品的存储容量从每克样品 0.1 wt.% 增加到每克 HQ 1.3 wt.%(或每克 HQ 7 wt.%)。此外,该系统在室温下稳定,P = 1 bar 氢气压力下,每克 HQ 的存储容量为 5.7wt.% H 2,并且在 100°C 时可完全释放 H 2。使用 MCM-41+HQ 等其他材料也获得了类似的存储容量。