电荷转移解离质谱法 (CTD-MS) 已被证明可在气相中诱导生物离子的高能碎裂,并提供类似于极紫外光解离 (XUVPD) 的碎裂光谱。迄今为止,CTD 通常使用动能介于 4-10 keV 之间的氦阳离子来引发自由基导向的分析物碎裂。然而,作为一种试剂,氦气最近已被列为一种越来越稀缺和昂贵的关键矿物,因此本研究探索了使用更便宜、更易获得的试剂气体的潜力。使用各种 CTD 试剂气体(包括氦气、氢气、氧气、氮气、氩气和实验室空气)对聚合度为 4 的模型肽缓激肽和模型寡糖 k-角叉菜胶进行碎裂。CTD 结果还与低能碰撞诱导解离 (LE-CID) 进行了对比,后者在同一个 3D 离子阱上收集。使用恒定的试剂离子通量和动能,所有五种替代试剂气体都产生了与 He-CTD 相比非常一致的序列覆盖率和碎裂效率,这表明试剂气体的电离能对生物离子的活化影响可以忽略不计。所有气体的 CTD 效率范围为缓激肽的 11-13% 和 k -角叉菜胶的 7-8%。在这些狭窄的范围内,缓激肽的 CTnoD 峰的丰度和缓激肽的 CTD 碎裂效率都与 CTD 试剂气体的电离能相关,这表明共振电荷转移在该肽的活化中起的作用很小。缓激肽和 k-角叉菜胶的大部分激发能来自电子停止机制,该机制由试剂阳离子与生物离子最高占据分子轨道 (HOMO) 中的电子之间的长程相互作用描述。CTD 光谱没有提供任何证据表明生物离子与氢气、氧气和氮气等反应性更强的气体之间存在共价结合产物,这意味着试剂离子的高动能使它们无法进行共价反应。这项工作表明,任何测试的替代试剂气体都是未来 CTD-MS 实验的可行选择。© 2021 Elsevier BV 保留所有权利。
• 化学蒸汽 – 研究表明,塑料长丝在 3D 打印过程中加热时会产生挥发性有机化合物 (VOC)。接触 VOC 会引起头痛、恶心以及眼、鼻和喉咙刺激。后处理蒸汽浴中使用的有机溶剂(如酒精和丙酮)容易蒸发,并造成吸入危险。 • 纳米颗粒排放 – 加热时,长丝在 3D 打印过程中会产生可吸入纳米颗粒 (NP)。此外,使用含 NP 的介质会将可吸入 NP 排放到周围大气中。NP 对健康的影响尚不清楚,但初步研究表明,吸入与心血管和肺部疾病有关。 • 腐蚀浴 – 通过将打印件放入含有氢氧化钠或其他腐蚀性化学物质的加热腐蚀浴中,可以去除支撑材料。接触这些化学物质可能会导致严重的化学灼伤、疤痕和视力损伤。 • 蒸汽浴 – 将 ABS 物体放入装有少量丙酮或其他有机溶剂的密闭容器中,即可将其打磨或“抛光”,这些溶剂会蒸发并与 ABS 塑料发生反应。这些溶剂通常易燃,吸入后会引起头痛、恶心和呼吸道刺激等症状。 • 生物材料 – 使用生物材料的打印机会产生气溶胶,这些气溶胶可能会被吸入或沉积在附近的表面上。 • 热量 – 紫外线灯、电机、加热床和打印头等组件在运行过程中会变热,触摸时可能会灼伤。 • 可燃性 – 铝、钢和钛等细小金属粉末在正常大气条件下会自燃(称为自燃性)。蒸汽抛光中使用的有机溶剂(如丙酮)在暴露于热源时会燃烧。床准备中使用的化学品(如发胶)是易燃的。 • 惰性气体 – 3D 打印机有时会使用惰性气体(如氮气或氩气)在打印室内形成不可燃气体。一些气溶胶喷射打印机使用惰性气体作为气溶胶化和沉积过程的一部分。如果将惰性气体引入周围大气,它会取代氧气并造成窒息危险。 • 电击 – 未受保护的电气元件和损坏的电源线可能会导致电击。
我们对气体稀薄对共振平面非线性声波能量动力学的影响进行了数值研究。问题设置是一个充满气体的绝热管,一端由以管的基本共振频率振动的活塞激发,另一端封闭;非线性波逐渐陡化,直到达到极限环,在足够高的密度下形成激波。克努森数(这里定义为特征分子碰撞时间尺度与共振周期之比)通过改变气体的基准密度在 Kn = 10 − 1 − 10 − 5 范围内变化,从稀薄状态到密集状态。工作流体为氩气。用 Bhatnagar-Gross-Krook (BGK) 模型封闭的玻尔兹曼方程的数值解用于模拟 Kn ≥ 0.01 的情况。对于 Kn < 0 . 01 ,使用完全可压缩的一维 Navier-Stokes 方程和自适应网格细化 (AMR) 来解析共振弱冲击波,波马赫数高达 1.01 。非线性波陡化和冲击波形成与波数-频率域中声能的频谱展宽有关;后者是根据 Gupta 和 Scalo 在 Phys. Rev. E 98, 033117 (2018) 中得出的二阶非线性声学的精确能量推论定义的,代表系统的 Lyapunov 函数。在极限环处,声能谱表现出惯性范围内斜率为 −2 的平衡能量级联,同一作者在自由衰减的非线性声波中也观察到了这种现象。在本系统中,能量在低波数/频率时通过活塞从外部引入,在高波数/频率时由热粘性耗散平衡,导致系统基准温度升高。热粘性耗散率在基于最大速度振幅的固定雷诺数下按 Kn 2 缩放,即随流动稀疏程度而增加;一致地,极限环处陡峭波的最小长度尺度(对应于冲击波(存在时)的厚度)也随 Kn 而增加。对于给定的固定活塞速度振幅,光谱能量级联的惯性范围的带宽随克努森数的增加而减小,导致系统的共振响应降低。通过利用柯尔莫哥洛夫流体动力学湍流理论中的无量纲缩放定律,结果表明,基于域内最大声速幅,可以预期声学雷诺数 Re U max > 100 的谱能量传递惯性范围。
Markus Mirz 1 m.mirz@iwm.rwth-aachen.de ; Marie Franke-Jurisch 2 marie.franke-jurisch@ifam- dd.fraunhofer.de ; Simone Herzog 1 s.herzog@iwm.rwth-aachen.de ; Anke Kaletsch 1 a.kaletsch@iwm.rwth-aachen.de ; Christoph Broeckmann 1 c.broeckmann@iwm.rwth-aachen.de 1 德国亚琛工业大学机械工程材料应用研究所 2 德国德累斯顿弗劳恩霍夫制造技术与先进材料研究所 摘要 粉末冶金法 (PM) 热等静压 (HIP) 中抽真空管的主要用途在于对胶囊进行抽真空和排气。传统的 HIP 胶囊由具有良好可焊性的金属板制成,因此易于连接抽吸管。随着增材制造 (AM) 等新兴技术的出现,现在可以设计更复杂的 HIP 胶囊。此外,还可以使用耐磨、富含碳化物的钢。然而,众所周知,这些材料难以焊接。本研究比较了两种不同的方法,将 AISI 304L 抽吸管粘合到由电子束熔化 (EBM) 以高碳工具钢 AISI A11 制成的 HIP 胶囊上。胶囊通过 TIG 焊接和钎焊连接,使用传统填充材料和基于热力学计算的定制填充材料。随后通过 HIP 进行固结,微观结构分析和氩气测量揭示了这三种方法对于气密接头的可行性和局限性。简介热等静压 (HIP) 是一种将金属粉末固结成固体材料的成熟工艺。它是在航空航天、汽车、石油和天然气等要求严格的行业中生产近净成形零件最可靠的成形工艺之一 [1]。使用一个或多个填充管将粉末填充到薄壁胶囊中。为了达到理想的高填充密度,填充过程通常在恒定振动下进行 [2]。之后,胶囊内的散装粉末通过真空泵通过抽气管排气,并在真空下保持数小时。在仍处于真空状态时,可通过锻造和焊接抽气管来封闭胶囊。在高温高压下,在 HIP 容器内对封装和脱气的粉末压块进行致密化 [3,4],这是最后一步,之后通过锯切、车削或铣削取出胶囊以获得成品部件。整个 HIP 工艺链如下图所示。
关键词:GaN、焊料、AuSn 焊料、溅射、共晶、芯片粘接摘要对于 GaN MMIC 芯片粘接,经常使用 80%Au20%Sn 共晶焊料。通常的做法是使用预制件 AuSn 将芯片粘接到 CuW 或其他一些基板上。在此过程中,操作员可能需要将预制件切割成芯片尺寸,然后对齐预制件、芯片和基板。由于操作员需要同时对齐三个微小部件(预制件、芯片和基板),因此这是一个具有挑战性的过程,可能需要返工。此外,预制件厚度为 1mil(在我们的例子中),这可能导致过量的焊料溢出,需要清理,因为它会妨碍其他片外组装。整个芯片粘接过程可能很耗时。在本文中,我们描述了一种在分离芯片之前在 GaN 晶圆上使用共晶成分溅射靶溅射沉积共晶 AuSn 的方法。它消除了预制件和芯片的对准,并且不会挤出多余的 AuSn。通过使用共晶溅射靶,它还可以简化靶材制造。下面给出了芯片粘接结果。引言宽带微波 GaN MMIC 功率放大器在国防和通信应用中具有重要意义。随着设备性能的提高,芯片粘接变得非常重要,因为它会极大地影响 MMIC 的热预算。80%Au/20%Sn 焊料已用于半导体应用超过 50 年,通常作为冲压预制件。然而,由于需要将 MMIC 芯片中的多个小块和焊料预制件对准到载体上,因此芯片粘接过程可能很繁琐且耗时。在芯片分离之前在整个晶圆上溅射沉积 AuSn 将大大简化芯片粘接过程。然而,溅射的 AuSn 成分对于正确的焊料回流至关重要。由于 Au 和 Sn 的溅射产率不同,AuSn 溅射靶材的化学性质和沉积的 AuSn 薄膜之间存在显著的成分变化 [参考文献 1]。下图 1 显示了 Au-Sn 相图。通过仔细控制溅射参数(功率、压力和氩气),我们能够从共晶成分溅射靶中沉积共晶 AuSn。制造共晶成分溅射靶要容易得多/便宜得多。
本文介绍了法国Villeurbanne的Laboratoire deLaMatière,法国Villeurbanne摘要:对Ni-Al合金的调查,在本文中介绍了在P型4H-SIC上形成欧姆的接触。检查了Ni/Al接触的几个比例。在1分钟内在400°C的氩气气氛中进行快速热退火,然后在2分钟内在1000°C下退火。为了提取特定的接触电阻,制造了传输线方法(TLM)测试结构。在p型层上可重复获得3×10-5Ω.cm2的特定接触电阻,而N a = 1×10 19 cm -3的掺杂,由Al 2+离子植入进行。测得的最低特异性接触电阻值为8×10-6Ω.cm2。引言硅碳化物是一种半导体,它在硅中具有多种优越的特性,例如宽带镜头三倍,高电场强度(六倍),具有铜和高电子饱和度漂移速度的高热电导率。由于SIC单晶生长晶粒已被商业化,因此在SIC应用中进行了深入的研究[1],用于高温,高频和高功率设备。半导体设备参数控制开关速度和功率耗散的强大取决于接触电阻[2]。为制造高性能的SIC设备,开发低阻力欧姆接触是关键问题之一。目前正在限制SIC设备的性能,特别是因为与P型材料接触[3-7]。这些接触通常采用铝基合金[3,7]。已经研究了许多不同的解决方案,并且非常关注Ti/al [3-5],该溶液在p -SIC上产生了10 -4-10-5Ω.cm2的特定接触电阻。最近通过使用诸如TIC [6]的替代材料(诸如TIC [6]的替代材料产生改进的接触的尝试,导致了低于1×10-5Ω.cm2的特定接触电阻,但是这些接触需要“外来”材料和非标准制造技术。另一方面,一些调查集中在接触Ni/Al [7,8]上,优势是形成欧姆行为无论构成不管构成。在本文中,通过不同的参数提出并讨论了p-SIC上Ni/Al欧姆接触的形成。用不同的参数实现了一组样品。善良的注意力首先集中在表面制备上,尤其是有或没有氧化的情况。然后,研究并讨论了触点中的特定电阻与AL含量。最后,也分析了退火序列的效果。使用标准的梯形热处理特征用于1000°C的退火,然后通过在400°C的中间步骤添加1分钟进行修改。实验样品是4H-SIC N型底物,其n型表层掺杂以10 15 cm -3的掺杂,从Cree Research购买。通过浓度为n a = 1×10 19 cm -3的Al 2+离子植入获得P型区域。在Argon Ambient下,在45分钟内在1650°C下进行射入后退火[9]。首先在溶剂中清洁样品,然后再清洗“ Piranha”溶液。冲洗后,将RCA清洁应用于样品,然后将它们浸入缓冲氧化物蚀刻(BOE)中。清洁后,立即在1150°C的干氧中生长了SIO 2层2小时。光刻来定义传输线方法(TLM)模式,并在将样品引入蒸发室之前就打开了氧化物。Ni的接触组成,然后通过电阻加热沉积AL。最终通过升降过程获得了TLM触点。仅在几分钟内在1000°C下在1000°C下在Argon大气下进行退火后才能建立欧姆接触的形成。
电子束光刻:根据应用,将电子束光刻胶 (950K PMMA A4,MicroChem) 旋涂至 270 nm-330 nm 的厚度。接下来,在顶部热蒸发 20 nm Au 的导电层,以避免光刻过程中电荷积聚。为了进一步减轻充电效应,我们使用了相对较低的束电流 (0.3 nA)、多通道曝光 (GenISys BEAMER) 和减少电子束在一个区域持续停留时间的写入顺序。光刻胶的总曝光剂量为 1200 uC/cm2,电压为 100 kV (Raith EBPG5000 plus)。曝光后,我们用 TFA 金蚀刻剂 (Transene) 去除导电层,并在 7 C 的冷板上将光刻胶置于 1:3 MIBK:IPA 溶液中显影 90 秒,然后用 IPA 封堵 60 秒,再用 DI 水冲洗。原子层沉积:在进行 ALD 之前,我们在 ICP RIE 工具 (PlasmaTherm Apex) 中使用 10 sccm O2 和 50 W ICP 功率进行三秒等离子曝光,以去除残留聚合物。使用此配方,PMMA 蚀刻速率约为 2.5 nm/s。对于 TiO 2 沉积,我们使用商用热 ALD 室 (Veeco/Cambridge Savannah ALD)。使用四(二甲酰胺)钛 (TDMAT) 和水在 90 C 下沉积非晶态 TiO 2,交替脉冲分别为 0.08 秒和 0.10 秒。沉积期间连续流动 100 sccm N 2,前体脉冲之间的等待时间为 8 秒。沉积速率通常为 0.6 A/循环。 ICP 蚀刻程序:我们通过氯基 ICP RIE 蚀刻(PlasmaTherm Apex)去除过填充的 TiO 2,基板偏压为 150 W,ICP 功率为 400 W,Cl 2 为 12 sccm,BCl 为 8 sccm。蚀刻速率通常为 1.5-1.7 nm/s。SEM 成像:在 5 nm Cr 导电层热沉积后,使用 Carl Zeiss Merlin FE-SEM 对纳米光子结构进行成像。FDTD 模拟:使用 Lumerical 有限差分时域软件模拟环形谐振器、光子晶体腔和光栅耦合器。透射光谱:我们使用自制的共焦显微镜装置,该装置具有独立的收集和激发通道,以进行透射光谱。脉冲超连续源 (430-2400 nm,SC-OEM YSL Photonics) 和光谱仪 (1200 g/mm,Princeton Instruments) 用于宽带测量。为了对单个腔体谐振进行高分辨率扫描,我们使用 50 kHz 线宽、可调 CW 激光器 (MSquared) 进行激发,并使用雪崩光电二极管 (Excelitas) 进行检测。金刚石膜:通过离子轰击 34 生成 500 nm 厚的金刚石膜,并在阿贡国家实验室通过化学气相沉积进行覆盖。在对离子损伤层进行电化学蚀刻后,去除悬浮膜并用 PDMS 印章翻转。然后使用 ~500 nm 的 HSQ 抗蚀剂将它们粘附到 Si 载体上,并在氩气中以 420 C 的温度退火 8 小时。最后,使用 ICP 蚀刻法将膜蚀刻至所需厚度,蚀刻气体为 25 sccm Ar、40 sccm Cl2、400 W ICP 功率和 250 W 偏压功率。蚀刻速率通常为 1.2-1.4nm/s。
35.1简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2 35.2光子检测器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 35.1.2 bacuum phototettors。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 35.2.2气态光子检测器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。6 35.2.3固态光子检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 35.2.4超导光子检测器。。。。。。。。。。。。。。。。。。。。。。。。8 35.3有机闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 35.3.1闪烁机制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 35.3.2塑料闪烁体的实用性。。。。。。。。。。。。。。。。。。。。。。。。。。11 35.3.3有机玻璃闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.3.4液体闪烁体的实用性。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.4无机闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.5 Cherenkov探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 35.6气态探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 35.6.1气体中的能量损失和电荷运输。。。。。。。。。。。。。。。。。。。。22 35.6.2多线比例和漂移室。。。。。。。。。。。。。。。。。。27 35.6.3高率效应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 35.6.4微图案气体探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。32 35.6.5时预测室。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。32 35.6.5时预测室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 35.6.6过渡辐射探测器(TRD)。。。。。。。。。。。。。。。。。。。。。。42 35.6.7电阻板腔室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 35.7 Lar Time投影室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 35.7.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 35.7.2一批超纯液体氩气。。。。。。。。。。。。。。。。。。。。。。。。52 35.7.3充电和光信号。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 35.7.4 Lar TPC拓扑。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 55 35.7.5数据采集和事件重建。 。 。 。 。 。 。 。 。 。53 35.7.4 Lar TPC拓扑。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 35.7.5数据采集和事件重建。。。。。。。。。。。。。。。。。。。。57 35.7.6发展。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。57 35.8半导体检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。58 35.8.1半导体中的信号产生。。。。。。。。。。。。。。。。。。。。。。。59 35.8.2结孔检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。61 35.8.3带有结构化电极的检测器。。。。。。。。。。。。。。。。。。。。。。。63 35.8.4硅检测器的精确时机。。。。。。。。。。。。。。。。。。。。。。。66 35.8.5硅检测器中的辐射损伤。。。。。。。。。。。。。。。。。。。。。。68 35.9低噪声检测器读数。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>71 35.9.1主噪声起源。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>72 35.9.2等效噪声分析。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>72 35.9.3时序措施。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>77 35.9.9.4数字信号处理。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。78 35.9.5什么时候使用什么?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79 35.10量热计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79 35.10.1引言。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79
核糖核酸酶测定DRR:在37°C下将10 µL DRR与160 ng 2 Kb RNA转录物一起孵育10 µL DRR后,检测到无污染的RNase。对于DNase I:在37°C下以160 ng的2KB RNA转录本与160 ng的2KB RNA转录本孵育5U后,未检测到污染RNase 4小时。
IFAM GmbH 是一家专门将微电子技术应用于安全技术的工程办公室,位于德国埃尔福特 Parsevalstraße 2, D-99092。联系信息包括电话 +49 – 361 – 65911 -0 和电子邮件 ifam@ifam-erfurt.de,网站为 www.ifam-erfurt.de。该公司提供 IMT4CPU 模块,其中包括 TTL 输入、串行接口 (RS422、RS485)、USB 接口和 LED 输出等功能。技术规格包括最大工作电压为 30V DC,最大电流消耗为 60/30 mA(12/24 V DC),具有 2 个串行 IF 模块、1 个 RS485 模块、1 个 USB 模块、1 个 LED-IF 模块和最多 128 个 I/O 接口。IMT4CPU 还可用于控制最多 2000 个 LED,可通过 IMT4PROC 接口连接进行编程。它具有 4 个 TTL 输入和最多 48 个继电器输出,用于控制外部设备。Minimax FMZ4100 火灾探测控制面板中的微处理器控制分析单元可有效监控大面积区域并从每个探测器传输数字信息,从而实现单个警报识别并将小区域分组为一个探测器组。火灾探测控制面板 FMZ 4100 具有内置自动中断控制,可快速响应警报信号而不会延迟。面板本身由看门狗定时器监控,每次数据通过其循环运行程序时,看门狗定时器都会重新启动,以防止触发脉冲故障时出现故障。如果发生干扰,只有一个插件单元会因并行操作而无法运行,并且可以在不中断操作的情况下更换有缺陷的组件。FMZ 4100 包含早期 Minimax 设备的基本功能,并符合现代安全系统要求,具有探测器识别、大型 LC 显示屏、报告打印机、状态和干预系统以及与建筑管理系统的接口。这可以快速评估警报以采取预防措施。该面板配备了广泛的分析软件,可区分报警信号和杂散信号,指导用户完成操作阶段,以最大限度地减少错误操作或压力影响的异常行为。FMZ 4100 符合最高安全要求,遵守有效的准则、规范和法规,如 VDE 和 EN 54,并获得德国财产保险协会的批准。面板的模块化设计允许扩展,在其最小的基本设计 (GAB 32) 中可以容纳 2 x 32 个火灾报警组和 32 个主要控制组。通过添加额外的插入式区域模块,FMZ 4100 火灾报警系统可以扩展到最多 3072 个组。主系统控制这些模块,而它们作为从属单元独立运行。该系统可以与最多 8 个立式机柜组合以实现这一总容量。FMZ 4100-GAB 32 型号具有 32 个自动和接触式火灾报警区域,以及用于电气监控和功能报警设备的主控制组。15U 壁挂式机柜提供 128 个自动和接触式火灾报警区以及主控制组。直立式机柜提供线路端接卡,以将每个组连接到线路卡。使用一张线路卡,可以为自动火灾报警、接触式火灾报警和主控制组提供、评估和监控四个报警组。系统将数字化报警信号记录在火灾控制面板中,然后将其与非易失性存储器中的编程值进行比较。如果结果为阴性,则产生报警信号或干扰信号。冗余报警电路确保即使控制系统因干扰或故障而发生故障也能持续运行。此外,探测器识别系统 (ZID-V) 使用微控制器和二次网络数据请求提供有关探测器位置和类型的实时信息。分析软件检查探测器信号的准确性,对其进行评估,并通过 FIFO 电路将结果异步传输到分析单元,结果显示在 8 x 40 字母数字 LC 显示屏上。ZID-V 系统与报告打印机等其他组件相辅相成,形成一个综合信息系统,可快速引入和部署。灭火系统依靠果断和适当的措施才能正常运作。“灭火控制”组件用于管理单区或多区灭火系统,独立于连接到火灾探测控制面板的其他系统运行。每个灭火区都由一个独立运作的灭火控制卡控制,该卡监控和控制探测器、释放装置和报警系统等重要组件。在发生警报时,灭火控制系统会记录探测器信号,发出火灾警报,并激活预编程的控制功能以启动灭火系统。火灾探测控制面板 FMZ 4100 可使用特殊配置程序针对不同应用进行编程,该程序将输入的特性转换为微控制器可理解的“语言”。这提供了最大的灵活性,尤其是在扩展现有系统时。通过现代下拉菜单技术和易于理解的输入说明,编程变得简单。火灾探测控制面板 FMZ 4100 还可以配备免费的可编程继电器,以便进一步组织警报,例如断开空调、中断制造过程、打开排烟挡板等。使用 Minimax 配置程序为每个特定系统确定继电器的操作和逻辑组合。标准功能包括由警报、预报警、干扰触发的操作,以及火灾探测器组的断开。火灾探测控制面板 FMZ 4100 具有标准串行接口,用于连接外部设备(如报警和图形报告系统或打印机),从而实现与上级管理系统的通信。火灾探测控制面板 FMZ 4100 可以通过串行接口与其他面板通信,为中继器面板中的 LED 控制提供 768 个可编程输出。它还具有串行接口,用于将数据传输到台式打印机等设备。该面板提供额外的接口,用于连接消防队控制面板和公共主报警系统,从而能够自动将报警信号传输到消防部门等外部服务。FMZ 4100 旨在适应特殊应用,例如用于木工或喷漆等行业的火花熄灭系统,以及计算中心设备保护。这些定制系统可以集成,而无需额外的分析电子设备,从而确保无缝运行,并具有可调节灭火时间和监测灭火剂供应等功能。气体探测器是一种模块化组件,可轻松集成到 FMZ 4100 中。该自主子系统持续监测气体浓度,当浓度超过预设限值时触发外部设备激活。所有测量数据都记录在 FMZ 4100 中,即使经过长时间后也可以进行事件追踪。控制面板的方案包括消防队操作面板、报告打印机和以 FMZ 4100 为核心的建筑集成。FMZ 4100 火灾探测控制面板多区域 CO2 灭火控制系统,用于喷漆厂和消防队钥匙箱,用于防火。FMZ 4100 面板采用多区域系统,具有自动释放、EMI 保护和光学/声学警报。它还包括用于探测器组的现场端接卡和主 CPU 外围设备评估和控制。附加功能包括: - 自动探测器 - 气体探测 - 浓度显示和操作面板 - 灭火系统,如大水灭火、泡沫/粉末灭火、火花灭火、预作用喷水灭火系统和氩气灭火系统 - Minimax 探测器收集 - 机械关闭排烟口解锁 - 带评估和控制系统的数字系统监控。 - 静态电流监控 - 自动和接触式探测器的探测器识别系统。 - EMI 保护 用于消防的气体探测系统 • 电源:15 V、12 V、5 V、24 V DC • 电池类型:免维护密封电池 (2 x 12 V)、耐深度放电、容量范围特定 • 应用:30 W/60 VA、1.5 A、250 V • 温度范围:-5°C 至 +40°C • 操作区域:干燥区域,限制进入 (G 29013) • 具体数据:+ 串行接口:RS 232C + 控制继电器数量:全套 + 外壳类型:壁挂式,32/32/321(2 x 80U 旋转框架),RAL 7032,灰色,结构化 + 直立机柜:31U、40U 和 128U(RAL 7032、灰色、结构化)• 尺寸:+ 525 x 709 x 275 毫米(32/96/961)+ 800 x 1600 x 500 毫米(128/128/1281)+ 800 x 2060 x 600 毫米(40U)• IP 等级:42、54 • 完整设备重量(不含电池):分别约 48 千克、135 千克和 160 千克 • 颜色:灰色 Minimax GmbH & Co. KG,位于德国巴特奥尔德斯洛 Industriestrasse 10/12,可致电 +49 45 31 8 03-0 或传真 +49 45 31 8 03-2 联系。电子邮件查询可发送至 [email protected],网站访问者可在 www.minimax.de 上获取更多信息。该公司持有 VdS 认证,符合 ISO 9001 F 15e/2.96/2/01.05/HMB 2 标准,编号为 S 89 201 1。该文本在德国印刷,概述了以下详细信息:四组自动探测器、七组接触探测器、四个主要控制组和八个用于非监控组的免费可编程继电器。