摘要。背景/目标:甲状腺塑性甲状腺癌(ATC)的预后很差,目前尚无既定治疗方法来改善其结果。我们先前报道说,Zeste同源2(EZH2)的增强子在ATC中高度表达,并且可能是治疗靶标。但是,EZH2对ATC增长的影响目前尚不清楚。材料和方法:我们研究了EZH2抑制剂(DZNEP)对四种ATC细胞系(8305C,KTA1,TTA1和TTA2)的影响。我们对所有ATC细胞系进行了基因面板分析,以识别细胞系之间DZNEP敏感性的差异。为了研究DZNEP对分化恢复的影响,我们评估了使用PCR进行DZNEP处理之前和之后甲状腺分化标记(TDM)的变化。结果:EZH2在所有ATC细胞系中均表示。在所有ATC细胞系中都检测到DZNEP的细胞还原作用,并且在KTA1细胞中最强,然后是TTA2细胞。TTA1和8305C细胞系显示了弱细胞减少作用,具有TP53突变。在任何ATC细胞系中均未观察到TDM的变化。结论:EZH2抑制剂DZNEP对ATC细胞的生长产生了抑制作用
a 海南医学院基础医学与生命科学学院海南省干细胞研究院、海南省热带转化医学教育部重点实验室、海南省热带环境脑科学研究与转化重点实验室,海口 571199 b 香港理工大学工程学院生物医学工程系,香港,中国 c 海南医学院第二附属医院整形外科,海口 570100,中国 d 中科综合医疗转化中心研究院(海南)有限公司,海口 571199,中国 e 淄博市中医院药理科,淄博 255300,中国 f 济宁医学院临床医学院,济宁 272002,中国 g 海南省生物智能材料与生物医疗器械工程研究中心、海南省功能材料与分子影像重点实验室、海南省医学科学院急救与创伤学院海南医学院,海口 571199 h 海南医学院急救与创伤教育部重点实验室,海口市创伤重点实验室,海南省创伤与灾难救援重点实验室,海南医学院第一附属医院,海口 571199 i 海南医学院第二临床学院,海口 571199
Mendelian疾病是由单个遗传基因座中的致病性变异引起的,通常表现为神经发育障碍(NDDS),影响了全球大部分儿科种群。这些疾病以非典型的大脑发育,智力残疾和各种相关的表型特征为特征。基因测试有助于临床诊断,但尚无定论的结果可以延长确认过程。最近对表观遗传失调的关注导致发现与NDD相关的DNA甲基化特征或发作性,从而加速了诊断精度。值得注意的是,参与泛素化途径的基因Trip12和USP7表现出特定的情节。了解这些基因在泛素化途径中的作用阐明了它们对情节形成的潜在影响。Trip12充当E3连接酶,USP7充当去泛素酶,在泛素化中呈现了对比的作用。比较这些基因致病性变异患者的表型性状既揭示了区别和共同点,从而提供了对潜在的病理生理机制的见解。本综述将Trip12和USP7在泛素化途径中的作用,它们对情节形成的影响以及对NDD发病机理的潜在影响。理解这些复杂的关系可能会揭示NDD的新型治疗靶标和诊断策略。
摘要:心脏发育是一个时空调节的过程,从胚胎阶段延伸到产后阶段。这种高度精心策划的过程的破坏会导致先天性心脏病或使心脏疾病或心脏衰竭使心脏易受。因此,对控制心脏发育的分子机制有深入的了解,对开发各种心脏疾病的创新疗法具有很大的希望。尽管已经取得了心脏发育的新型转录和表观遗传调节剂的重大进展,但探索影响这一过程的翻译后机制却滞后。culling环E3泛素连接酶(CRLS)是最大的泛素连接酶家族,控制约20%的细胞内蛋白的泛素化和降解。新兴证据发现了CRL在调节广泛的细胞,生理和病理过程中的关键作用。在这篇综述中,我们总结了有关CRL对心脏形态发生和成熟的多功能调节的最新发现,并呈现未来的观点,以促进我们对CRLS如何管理心脏发育过程的全面理解。
摘要:通过激活诸如MAP激酶和NF-κB信号途径等细胞内信号传导途径的激活,类似Toll样受体(TLR)诱导先天免疫反应,并在针对细菌或病毒感染的宿主防御中起重要作用。同时,TLR信号的过度激活导致各种炎症性疾病,包括自身免疫性疾病。TLR信号传导以平衡最佳免疫反应和炎症。但是,其平衡机制尚未完全理解。在这项研究中,我们将E3泛素连接酶lincr/ neurl3识别为TLR信号传导的关键调节剂。在有效的细胞中,因激动剂诱导的TLR3,TLR4和TLR5引起的JNK和p38 MAPK的持续激活显然被减弱。与这些观察结果一致,TLR诱导的一系列炎性细胞因子的产生显着减弱,这表明LINCR通过促进JNK和P38的激活来积极调节先天免疫反应。有趣的是,我们进一步的机械研究确定了MAP激酶的负调节剂MAPK磷酸酶-1(MKP1),是LINCR的泛素化靶标。因此,我们的结果表明,通过平衡LINCR(阳性调节剂)和MKP1(阴性调节器),TLR可以激活MAP激酶途径,这可能有助于诱导最佳免疫反应。
缩写:AAC:腹主动脉肿块; CVB3:Coxsackie病毒B3; CYLD:囊肿症; DCM:扩张的心肌病; DM:糖尿病; DUSP1:双重特异性磷酸酶1; EGFR:表皮生长因子受体; ER:内质网; FSTL1:卵泡样蛋白1; GPX4:谷胱甘肽过氧化物酶4; HAUSP:疱疹病毒相关的泛素特异性蛋白酶; HIF-1α:低氧诱导因子-1α; I/R:缺血再灌注; JAMMS:JAB1/MPN/MOV34金属蛋白酶; KDM3A:赖氨酸特异性脱甲基酶3a; mettl3:类似甲基转移酶的3; MI:心肌梗塞; MIDYS:MIDYS家庭主题与含有新颖的配音家庭的泛素互动; MJD:Machado Joseph病蛋白; NAD +:烟酰胺腺嘌呤二核苷酸; OTU:卵巢肿瘤相关的蛋白酶;耳鼻蛋白:具有线性链接特异性的OTU去泛素酶; PAC:肺动脉连接; RHD:风湿性心脏病; RVH:右心肥大; SERCA2A:SARCO/内质网Ca2 + -ATPase; sirt:sirtuin; Slim1:骨骼肌lim蛋白1; STAT3:转录3的信号换能器和激活因子; T2DM:type2糖尿病; TAC:跨动脉缩空; TAK1:转化生长因子激活的激酶1; UCHS:泛素C末端水解酶; USP:泛素特异性蛋白酶; YB-1:Y-box结合蛋白-1。
Machado-Joseph疾病(MJD)是一种毁灭性且无法治愈的神经退行性疾病,其特征是进行性共济失调,难以说话和吞咽。因此,受影响的个体最终成为轮椅依赖,需要持续的护理,并面临预期寿命缩短。MJD的单基因原因是ATXN3基因内的三链肽(CAG)重复区域的膨胀,这导致产生的ataxin-3蛋白内聚谷氨酰胺(PolyQ)膨胀。虽然可以很好地确定ataxin-3蛋白作为去泛素化(DUB)酶的作用,因此与蛋白质抗体有关,但仍然存在有关polyq膨胀在ataxin-3对其DUB功能的影响的问题。在这里,我们回顾了当前的Ataxin-3的DUB功能,其DUB目标以及PolyQ扩展对Ataxin-3的DUB功能的影响的知识。我们还考虑了ataxin-3的配音功能的潜在神经保护作用,以及亚Xaxin-3作为基因转录的配音酶和调节剂的相交。ataxin-3是MJD中的主要致病蛋白,似乎也参与了癌症。由于异常去泛素化与神经变性和癌症既有联系,因此对Ataxin-3的DUB功能的全面理解对于在这些复杂条件下阐明潜在的治疗靶标很重要。在这篇综述中,我们旨在将Ataxin-3的知识巩固为DUB和揭幕区域,以进行未来的研究,以帮助对Ataxin-3的DUB功能进行治疗,以治疗MJD和其他疾病。
摘要35蛋白质泛素化的精确控制对于大脑发育至关重要,因此,泛素信号网络的破坏36可能导致神经系统疾病。37个去泛素酶USP7的突变导致HAO-Fountain综合征(HAFOUS),其特征是38个发育延迟,智力残疾,自闭症和侵略性行为。在这里,我们报告了39个小鼠前脑中兴奋性神经元中USP7的条件缺失触发了40种表型,包括感觉运动缺陷,学习和记忆力障碍以及侵略性的41个行为,类似于Hafous的临床特征。USP7缺失诱导神经元细胞凋亡的42依赖性肿瘤抑制剂p53。然而,尽管损失了p53,但43个USP7条件小鼠的大多数行为异常仍然存在。引人注目的是,大脑中的USP7缺失44突触蛋白质组和树突状脊柱形态发生独立于p53。综合45蛋白质组学分析表明,神经元USP7相互作用富含与神经发育疾病有关的蛋白质46,并专门鉴定了RNA剪接因子47 PPIL4作为USP7的新型神经元底物。皮质神经元中PPIL4的敲低会损害48个树突状棘的形态发生,表现USP7损失对树突状棘的影响。49这些发现揭示了一种新型的USP7-PPIL4泛素信号传导链接,该联系调节发育中的大脑中的神经元50连通性,这对我们对Hafous和其他神经发育障碍的发病机理51的理解产生了影响。52 53关键字54泛素,去泛素酶,USP7,HAO-Fountain综合征,p53,脑发育,55谷氨酸能神经元,突触,TMT蛋白质组学,PPIL4 56 56 57 58 59 59
摘要:基于质谱的有限蛋白水解化学蛋白质组学方法已成为识别和分析小分子 (SM) 与其蛋白质靶标之间相互作用的有力工具。Gracilioether A (GeA) 是一种从海绵中分离出来的聚酮化合物,我们旨在利用这种策略追踪其相互作用组。DARTS(药物亲和力响应靶标稳定性)和 t-LiP-MS(靶向有限蛋白水解质谱)代表了本研究中使用的主要技术。DARTS 应用于 HeLa 细胞裂解物以识别 GeA 靶蛋白,并使用 t-LiP-MS 研究蛋白质与 GeA 结合的区域。通过使用表面等离子体共振 (SPR) 的结合研究和计算机分子对接实验,结果得到了补充。泛素羧基末端水解酶 5 (USP5) 被确定为 GeA 的一个有希望的靶点,并解释了 USP5-GeA 复合物的相互作用特征。USP5 是一种参与蛋白质代谢途径的酶,通过将降解蛋白质上的多泛素链分解为泛素单体。这种活性与不同的细胞功能有关,包括染色质结构和受体的维持、异常蛋白质的降解和致癌进展。在此基础上,这些结构信息为后续研究开辟了道路,重点是确定 Gracilioether A 的生物学潜力以及基于新结构骨架合理开发新型 USP5 抑制剂。
去泛素化是调节蛋白质稳态的翻译后修饰的一种重要形式。卵巢肿瘤结构域的蛋白质(OTUDS)亚家族成员OTUD3被鉴定为参与调节各种生物学过程(例如免疫和影响)的去泛素化酶。这些生理过程中的干扰会引发人类和动物的疾病,例如癌症,神经退行性疾病,糖尿病,乳腺炎等。otud3在肿瘤中异常表达,是一把双边剑,在影响癌细胞增殖,转移和代谢的不同类型的肿瘤中发挥肿瘤促成或抗肿瘤作用。otud3在转录水平上通过许多microRNA(例如miR-520h,miR-32和miR101-3p)调节。此外,OTUD3受到许多翻译后修改(例如乙酰化和泛素化)的调节。因此,了解OTUD3表达的调节机制可以帮助您深入了解其在人类免疫和疾病中的功能,从而将其用作诊断或治疗疾病的治疗靶点的可能性。