输送液体流动的自然结构表现出流动介导力和长期适应之间的相互作用。这种现象与心血管系统有关,其中心腔的几何重塑是导致心力衰竭的病理进展的主要机制。这里分析了心脏中只有一个右心室 (SRV) 的儿童的心脏适应性。在这些患者中,左心室 (LV) 发育不良,健康的右心室 (RV) 在出生后早期通过手术重新连接,以承担系统心室的功能作用。这种情况代表了一种研究心脏适应性的特殊模型,本研究利用了不常见的数据集(64 个正常 RV、64 个正常 LV、64 个具有临床正常功能的 SRV)。从流体动力学和组织变形的角度分析心室功能性能,目的是验证 SRV 配置从原始 RV 适应到向 LV 功能发展的程度。结果表明,由于工作压力较高,SRV 的体积立即增大,几何形状也更宽。然而,流体动力学湍流较弱,推进力减小。周围组织出现肌肉增厚,肌纤维多向取向,模仿 LV。然而,流动性能降低和结构一致性较低使 SRV 面临更高的进行性功能障碍适应风险。这项研究表明了心脏流量和组织反应之间的相互作用如何代表导致心力衰竭发展的宏观驱动因素。更一般地说,联合评估流体动力学和结构功能特性可能是探索不同时间尺度上的适应过程的必要条件。
上午 8:00 – 上午 9:57 并行会议 A01 焦点会议:流体 接下来:软体撞击流体 I Sagamore 宴会厅 1–7 A02 空气动力学:常规 130 A03 主动物质 I:主动湍流 131 A04 动脉瘤 132 A05 动物飞行:飞行昆虫 I 133 A06 高雷诺数游泳 I 134 A07 生理、发声和言语 135 A08 气泡:常规 136 A09 CFD:浸入边界法 I 137 A10 粒子-湍流相互作用 I 138 A11 声学:常规 139 A12 颗粒流 I 140 A13 生物流体动力学:生理 I 141 A14 自由表面流:常规142 A15 实验技术:生物和多相测量 143 A16 流动控制:概述 144 A17 流动不稳定性:多相流和瑞利-泰勒 145 A18 喷射流 I 205 A19 非牛顿流:理论与建模 206 A20 非线性动力学:库普曼和相关方法 207 A21 湍流:湍流建模的机器学习方法 I 208 A22 多孔介质流:对流和传热 231 A23 自由表面流:自然流 232 A24 反应流:LES 和 DNS 233 A25 表面张力效应:界面现象 I 234 A26 波:非线性动力学与湍流 235 A27 涡旋动力学:概述 I 236 A28 CFD:不确定性量化和机器学习 237 A29 液滴:电场效应 238 A30 液滴:超疏水表面和多液滴相互作用 239 A31 流动不稳定性:复杂流体 240 A32 地球物理流体动力学:大气 241 A33 微/纳米流动:通道 242 A34 相变 I 243 A35 一般流体动力学:越过障碍物的流动 244
收到日期:2021 年 12 月 29 日。修改后收到日期:2022 年 3 月 31 日。接受日期:2022 年 4 月 19 日。摘要研究了地下矿辅助通风的四种不同情景,使用实际数据验证结果,并确定了在风速和热负荷去除方面最佳的通风条件。管道离工作面越远,情况就越糟。管道在横截面积方面的最佳布局,以及在巷道下侧或上侧的位置,无法清楚地推断,因为这取决于分析中使用的变量,无论是温度、风速还是工作面的特定区域。本研究的结果有助于开发最有效的辅助通风系统,用于地下矿的工作面或设备位置。除此之外,还可以使用创建的模型分析未来情景,为在每种不同情况下选择最佳辅助通风布局提供良好的工具。关键词:矿井通风;CFD 模型;地下采矿;辅助通风系统;效率。
图 1 四个 𝑁 量子比特量子寄存器上的四个试验状态 | 𝑓 ( 𝑗 ) ⟩ 的 QNPU 架构,初始化为 | 0 ⟩ = | 00 . . . 0 ⟩ 。网络的红色部分创建变分试验状态。绿色 QNPU 部分实现问题特定的线性算子 𝑂 𝑗 。其操作由端口 CP 控制,试验函数通过输入端口 IPx 输入,输出标记为 OPx。蓝色辅助网络用于评估成本函数(图来自 [11])。
控制连续体机制的物理定律是“质量保护”和“动量保护”,包括角动量,这是牛顿法的表达。鉴于循环系统内部温度的变化有限,我们通过忽略热力学现象来简化整个物质。我们还假设该材料不会经历(状态,化学或其他)的转换,并保持与时间相同的特性。在这些简化的条件下,唯一发挥作用的能量形式是其动力和势能表现的机械能。因此忽略了其他形式的能量,例如与热运输或化学反应相关的能量;这意味着任何非机械特性,例如温度或溶质的浓度,都不会主动影响运动,并且用流体被动地运输。在这种纯粹的机械场景中,唯一的能量形式是机械能,可以重新铸造动量的保护,以表达“能量保护”,而不是附加的保护法。
空气阻力又称气动阻力,在高速运动中对运动员的动作有很大的影响。以滑雪运动而言,在滑雪场滑雪过程中,场地的风环境对滑雪者的身体产生推力或拖力,滑行速度和抗阻功受风的影响很大,如何减小风阻功是运动科学的研究重点。本研究对滑雪者实体模型进行了风洞实验。首先对某滑雪者身体进行非接触式三维测量,并扫描打印若干滑雪者模型;然后在黑龙江省亚布力滑雪训练基地针对该滑雪者典型的运动姿势进行风洞实验,研究滑雪过程中空气阻力系数与风速的关系。结果表明:滑雪过程中阻力系数不随风速而变化。滑雪运动员的身高、滑雪姿势、迎风面迎风面积等参数对阻力系数有一定的影响,滑雪运动员身高越高,阻力系数越大。本文总结出的规律可供运动员在训练中采取合理的战术、优化滑雪姿势,从而提高比赛成绩。
使用横跨左心室辅助装置(LVAD)和右心室辅助设备(RVAD)操作的条件进行的体外液压性能测量,创建并验证了AVAD CFD模型。放置在整个泵中的静态钻头被用来对CFD结果进行评价。然后使用CFD模型来评估液压性能的变化,并通过不同的转子轴向位置进行识别并确定潜在的设计改进。以转子速度从2,300至3,600转/分钟进行液压性能,并以2.0至8.0 l/min的流速进行测量。CFD预测的液压升高与体外测量的数据非常吻合,在2300 rpm的6.5%以内,对于较高的转子速度,在3.5%以内。CFD成功预测了壁静电压力,与7%以内的实验值相匹配。在泵的运行中观察到泵的流场中的高度相似性和圆周均匀性,作为LVAD和RVAD。次级叶轮轴向清除率降低导致峰值流量停留时间降低10%,次级叶轮上的静态压力降低。这些较低的静态处方表明,次级叶轮的向上转子力量降低,并且泵的压力灵敏度所需的增加。
摘要 我们提出了一个计算流体动力学 (CFD) 框架,用于对 3D 打印中的激光金属沉积 (LMD) 过程进行数值模拟。该框架综合了数值公式和求解器,旨在提供足够详尽的过程场景,其中载体气体被建模为欧拉不可压缩流体,在 3D 打印室内传输金属粉末,这些粉末被跟踪为拉格朗日离散粒子。基于来自激光束和加热基板的热源,开发了粒子模型,使其也通过热传递与载体气体相互作用,并根据粒子液体质量分数的增长规律在熔化相中演变。采用增强型数值求解器,其特点是改进的牛顿-拉夫森方案和用于跟踪粒子的并行算法,以获得数值策略的效率和准确性。从研究整个 LMD 过程的优化设计的角度出发,我们提出了一种敏感性分析,专门用于评估流入速率、激光束强度和喷嘴通道几何形状的影响。此类数值计算是使用 deal.II 开源有限元库开发的内部 C++ 代码执行的,并可在线公开获取。
“活性物质是由大量活性“剂”组成的物质,每种活性“剂”都会消耗能量来移动或施加机械力。这种系统本质上是不热平衡的。与趋向平衡的热系统和具有施加稳定电流的边界条件的系统不同,活性物质系统打破了时间反演对称性,因为能量被各个成分不断耗散。大多数活性物质的例子都来自生物,涵盖了生物的所有尺度,从细菌和自组织生物聚合物(如微管和肌动蛋白,两者都是活细胞细胞骨架的一部分)到鱼群和鸟群。然而,目前大量的实验工作致力于合成系统,如人造自推进粒子。活性物质是软物质中一个相对较新的材料分类:研究最广泛的模型 Vicsek 模型可以追溯到 1995 年。
Landau的照片也不完整,后来被其他人增加了。目前的理解是,氦原子确实经过bose凝结,而超流速速度是冷凝水波函数相的梯度。,但冷凝水不是超流体。只有大约10%的流体是0 K处的冷凝物,而所有冷凝物都是超氟。