摘要当前研究的主要目的是开启非牛顿威廉姆森(Williamson)流动性的布朗运动和热疗法扩散的影响,并通过指数拉伸片段具有热辐射和微生物的生物感染的影响。为此,相似性函数涉及将部分微分方程传输到响应普通微分方程的情况。然后雇用了带有射击技术的runge -kutta方法,以评估使用MATLAB脚本的利用来评估所需的发现。流体速度在磁参数的强度上变得慢,并且以混合对流的形式提升。温度通过布朗运动和嗜热的参数升高。生物对流路易数字降低了速度场。与现有文献相比,结果显示出令人满意的一致性。2022作者。由Elsevier B.V.代表Alexandria University的工程学院出版,这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)下的开放访问文章。
我们研究了淬灭后全息超流体的放松,当末端状态被调谐到临界点,或者非常接近它时。通过以数值方式求解运动的整体方程,我们证明了在前一种情况下,系统表现出功率定律的损失以及紧急的离散量表不变性。后一种情况是由临界放慢速度主导的政权,我们表明在延迟期限下降开始之前存在一个中间时间范围,该系统的行为与其功率定律下降的临界点相似。我们进一步假设一个现象学的毛pitaevskii样方程(对应于Hohenberg和Halperin的模型F),该方程能够对近临界淬灭到超级流体和正常阶段后的全息超氟中全息超流体的行为进行定量预测。有趣的是,描述非线性时间演化的现象学方程的所有参数,可以用静态平衡溶液和线性响应理论的信息固定。
实习传播并加强了改善绿色液体混合的倡议。通过三壁图案的微流体通道实现的增强混合技术可以彻底改变药物输送,化学合成和生物技术等领域。纳米颗粒的均匀分散可以提高药物输送系统的效率,改善高级材料的合成,并可以精确操纵生物样品。该实习将为潜在的未来研究人员提供机会,以探索设计和制造三壁图案的微流体通道的应用表面工程,以增强绿色液体中纳米颗粒的混合。此外,这项实习将使学生接触微制造技术,微/生物流体设置,检测和表征工具。它还将帮助他们了解微荧光学和纳米流体/生物医学设备设计和开发/智能和可持续制造领域的潜在未来研究范围。
摘要这项工作的主要目的是研究通过非线性多孔拉伸表面的上麦克斯韦·卡森(Maxwell Casson)的磁性水力动力滑动流动的影响,考虑了纳米流体边界层的流动。使用适当的相似性转换,控制部分微分方程将转换为非线性普通微分方程。使用runge-kutta-fehlberg方法实现了射击方法来实现更新的方程式的数值解决方案。彻底检查了广泛的基本流体特征,包括施密特数,磁参数,温度滑移参数,浓度滑移参数,速度和非线性拉伸参数。使用图和表,检查并报告了对温度,浓度和速度的影响。调查包括计算和彻底辩论皮肤摩擦系数,局部舍伍德数量和局部努塞尔特数字。
摘要 许多增材制造 (AM) 技术依赖于粉末原料,粉末原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,通过额外的机械和热界面通量来整合快速蒸发的影响。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在由于相变和耦合的微流体-粉末动力学而动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
在过去的 15 年里,被称为立方体卫星 (CubeSat) 的小型卫星已被用来研究太空环境对生物体的影响。迄今为止,所有生物立方体卫星任务均在低地球轨道 (LEO) 上进行研究,每个任务都比上一个任务改进了其生物支持子系统。NASA 即将发射的生物立方体卫星任务 BioSentinel 将作为 Artemis 1 的次要有效载荷发射,最终到达低地球轨道以外的太阳中心轨道,并受到地球磁层的保护。BioSentinel 的主要目标是 1) 研究深空辐射环境的生物影响和 2) 发展我们的技术能力以支持深空生物研究。BioSentinel 中的仪器和子系统继承了之前的立方体卫星任务(例如流体学、光学、热控制),但在许多层面上得到了扩展。 BioSentinel 改进了材料和设计(例如,降低卡片的蒸汽渗透性以保持低湿度;增加了带有内部止回阀、干燥剂室和气泡捕集器的流体歧管,用于每个单独的流体卡),并增加了新的发现工具(例如,机载 LET 光谱仪)。本期观点的主要目的是强调过去和正在进行的 NASA 生物立方体卫星任务中使用的流体系统的演变,并强调这些系统可以优化以用于未来 LEO 以外的实验的方面。
本论文研究了氧化锌(ZnO)对天然聚合物纳米流体的热层特性的影响。重点是与掺入ZnO纳米颗粒的果胶纳米流体。在本实验中,将不同浓度的氧化锌(ZnO)与恒定量的果胶结合在一起,以研究其对最终溶液特性的影响。最初,ZnO和果胶溶液单独制备并进行杂志搅拌和超声处理。实验涉及三种不同的ZnO:0.1 g,0.02 g和0.03 g,而果胶的重量在整个过程中保持在0.05g。在单个制备后,将溶液混合,进一步搅拌并进行超声处理。采用两种分析技术,即扫描电子显微镜(SEM)和热重分析(TGA)来表征样品。sem提供了对表面形态和化学组成的见解,而TGA分析了质量变化而不是温度变化,提供了有关材料特性的宝贵信息。讨论了这些技术在材料表征和分析中的重要性和应用,突出了它们在理解物理和化学现象中的作用。ZnO纳米颗粒的存在增强了果胶纳米流体的热稳定性。接触角度测量以评估纳米流体的亲水性。接触角趋势表明疏水性增加,果胶纳米流体中ZnO的浓度增加。测量接触角支持合成纳米流体的高稳定性。总体而言,这项研究为将ZnO纳米颗粒掺入果胶纳米流体及其对热物理特征的影响提供了宝贵的见解。这些发现有助于开发纳米流体,以用于药物释放和生物医学领域的潜在应用。
摘要 许多增材制造 (AM) 技术依赖于粉末原料,粉末原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,通过额外的机械和热界面通量来整合快速蒸发的影响。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在由于相变和耦合的微流体-粉末动力学而动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
2.机器热管理系统电池热管理系统可通过调节温度条件来安全有效地操作电池。高电池温度可以加速电池老化并带来安全风险,而低温会导致电池容量降低和充电/放电性能较弱。电池热管理系统可以通过散热过热或在太冷时提供热量来控制电池的工作温度。电池热管理系统(BTMS)对于以下原因至关重要:热管理系统调节电池组中的过量热量,以提高车辆性能和效率。BTM的主要作用是将电池温度保持在安全限制之内,以避免热跑道。冷却函数可最大程度地减少电池组中的过量热量,使温度保持在允许的范围内,并限制对周围细胞的不利影响。