摘要当前研究的主要目的是开启非牛顿威廉姆森(Williamson)流动性的布朗运动和热疗法扩散的影响,并通过指数拉伸片段具有热辐射和微生物的生物感染的影响。为此,相似性函数涉及将部分微分方程传输到响应普通微分方程的情况。然后雇用了带有射击技术的runge -kutta方法,以评估使用MATLAB脚本的利用来评估所需的发现。流体速度在磁参数的强度上变得慢,并且以混合对流的形式提升。温度通过布朗运动和嗜热的参数升高。生物对流路易数字降低了速度场。与现有文献相比,结果显示出令人满意的一致性。2022作者。由Elsevier B.V.代表Alexandria University的工程学院出版,这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)下的开放访问文章。
2.机器热管理系统电池热管理系统可通过调节温度条件来安全有效地操作电池。高电池温度可以加速电池老化并带来安全风险,而低温会导致电池容量降低和充电/放电性能较弱。电池热管理系统可以通过散热过热或在太冷时提供热量来控制电池的工作温度。电池热管理系统(BTMS)对于以下原因至关重要:热管理系统调节电池组中的过量热量,以提高车辆性能和效率。BTM的主要作用是将电池温度保持在安全限制之内,以避免热跑道。冷却函数可最大程度地减少电池组中的过量热量,使温度保持在允许的范围内,并限制对周围细胞的不利影响。
摘要这项工作的主要目的是研究通过非线性多孔拉伸表面的上麦克斯韦·卡森(Maxwell Casson)的磁性水力动力滑动流动的影响,考虑了纳米流体边界层的流动。使用适当的相似性转换,控制部分微分方程将转换为非线性普通微分方程。使用runge-kutta-fehlberg方法实现了射击方法来实现更新的方程式的数值解决方案。彻底检查了广泛的基本流体特征,包括施密特数,磁参数,温度滑移参数,浓度滑移参数,速度和非线性拉伸参数。使用图和表,检查并报告了对温度,浓度和速度的影响。调查包括计算和彻底辩论皮肤摩擦系数,局部舍伍德数量和局部努塞尔特数字。
图2用于循环肿瘤细胞(CTC)基于液体活检的基于液滴的微流体。(a)使用交叉芯片进行CTC隔离的实验设置。根据CC的条款通过许可证复制。67版权所有2019,Ribeiro -Samy等。67(b)单个细胞水平上点突变分析的流动。经许可复制。68版权2021,Elsevier。 (c)方案说明显示了基于声学液滴定位技术的多功能酶 - 响应性GNP芯片,用于捕获和释放单个CTC的需求。 经许可复制。 69版权所有2019,美国化学学会。 (d)数字WGS平台的设计和操作。 根据CC的条款复制了NC许可证。 70版权所有2019,Ruan等。 70(e)数字 - rna -seq的示意图。 经许可复制。 77版权2020,美国化学学会。 (f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。 根据PANS许可条款复制。 80版权所有2018,Dhar等。 80(g)基于虚拟液滴的SCPS平台的总体工作原理。 经许可复制。 81版权2020,Elsevier。 (H)基于配对芯片的单个细胞免疫测定的工作原理。 经许可复制。 85版权2022,美国化学学会。 根据CC的条款复制了NC许可证。68版权2021,Elsevier。(c)方案说明显示了基于声学液滴定位技术的多功能酶 - 响应性GNP芯片,用于捕获和释放单个CTC的需求。经许可复制。69版权所有2019,美国化学学会。 (d)数字WGS平台的设计和操作。 根据CC的条款复制了NC许可证。 70版权所有2019,Ruan等。 70(e)数字 - rna -seq的示意图。 经许可复制。 77版权2020,美国化学学会。 (f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。 根据PANS许可条款复制。 80版权所有2018,Dhar等。 80(g)基于虚拟液滴的SCPS平台的总体工作原理。 经许可复制。 81版权2020,Elsevier。 (H)基于配对芯片的单个细胞免疫测定的工作原理。 经许可复制。 85版权2022,美国化学学会。 根据CC的条款复制了NC许可证。69版权所有2019,美国化学学会。(d)数字WGS平台的设计和操作。根据CC的条款复制了NC许可证。70版权所有2019,Ruan等。70(e)数字 - rna -seq的示意图。经许可复制。77版权2020,美国化学学会。(f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。根据PANS许可条款复制。80版权所有2018,Dhar等。80(g)基于虚拟液滴的SCPS平台的总体工作原理。经许可复制。81版权2020,Elsevier。(H)基于配对芯片的单个细胞免疫测定的工作原理。经许可复制。85版权2022,美国化学学会。根据CC的条款复制了NC许可证。(i)使用MA芯片从患者液体活检中分离出代谢活性细胞的实验工作流程。87版权2020,Rivello等。87(j)使用滴剂 - 需求喷墨打印技术和MALDI MS的开放空间平台中基于代谢的捕获和分析肿瘤细胞的插图。经许可复制。88版权2021,美国化学学会。
NAGPUR的圣弗朗西斯德销售学院电子部 - 印度440006摘要:锂离子(Li-ion)电池已成为便携式系统的主要次要电源。 他们的显着优势在于他们在处置前多次充电的能力,提供了没有有毒元素的清洁能源。 但是,为这些电池充电需要仔细考虑。 快速充电或过度充电会升高电池温度,可能导致爆炸和事故。 存在各种充电方法,但是恒定的电流恒定电压(CC-CV)方法由于能够防止关键的过度充电,因此特别适合锂离子电池。 本文引入了利用89S52微控制器的锂离子电池充电器电路。 充电器采用CC-CV方法来为电池充满电。 关键字:电池充电器,CC-CV充电,锂离子电池。 引言三个主要的化学分子主导了次级电池的景观:镍镉(NICD),镍金属氢化物(NIMH)和锂离子(锂离子)电池。 但是,由于能源容量有限,尺寸较大和环境问题,NICD和NIMH电池在达到某些标准方面的符合某些标准不足。 相比之下,锂离子电池具有高工作电压,令人印象深刻的能量和功率密度,最小的自我放电以及缺乏记忆效应[1]。 这种优势导致锂离子电池成为各种便携式电子产品的首选选择,并且最近在电动和混合电动汽车领域[1-4]。NAGPUR的圣弗朗西斯德销售学院电子部 - 印度440006摘要:锂离子(Li-ion)电池已成为便携式系统的主要次要电源。他们的显着优势在于他们在处置前多次充电的能力,提供了没有有毒元素的清洁能源。但是,为这些电池充电需要仔细考虑。快速充电或过度充电会升高电池温度,可能导致爆炸和事故。存在各种充电方法,但是恒定的电流恒定电压(CC-CV)方法由于能够防止关键的过度充电,因此特别适合锂离子电池。本文引入了利用89S52微控制器的锂离子电池充电器电路。充电器采用CC-CV方法来为电池充满电。关键字:电池充电器,CC-CV充电,锂离子电池。引言三个主要的化学分子主导了次级电池的景观:镍镉(NICD),镍金属氢化物(NIMH)和锂离子(锂离子)电池。但是,由于能源容量有限,尺寸较大和环境问题,NICD和NIMH电池在达到某些标准方面的符合某些标准不足。相比之下,锂离子电池具有高工作电压,令人印象深刻的能量和功率密度,最小的自我放电以及缺乏记忆效应[1]。这种优势导致锂离子电池成为各种便携式电子产品的首选选择,并且最近在电动和混合电动汽车领域[1-4]。然而,充电锂离子电池需要一种独特的方法,以确保从未破坏当前,电压,温度,功率和能量的规定限制。充电期间的连续监视对于维护电压和当前水平的安全边界至关重要。li-ion电池充电方法已经提出了许多电池充电方法,包括恒定滴流(CTC),恒定电流(CC),恒定电压(CV)和恒定电流恒定恒定电压(CC-CV)策略。鉴于锂离子电池的寿命可能会受到收费和过度充电的显着影响,因此为这些电池充电的常规选择是CC-CV方法[2]。另一种广泛使用的充电技术是TPC充电方法。恒定电流电压充电方法CC-CV方法是电池化学的最普遍,广泛采用的方法,尤其是那些具有上电压极限的方法,例如锂离子电池。此方法在充电逻辑中涉及两个不同的阶段:恒定电流的初始阶段,然后是随后的恒定电压阶段。
简介。- 量子计算是现代科学最引起的主题之一,至少对于选定的应用程序,具有壮观应用的承诺远远超出了古典电子计算机的影响力[1]。量子计算的宣言可以追溯到理查德·费曼(Richard Feynman)的时代制作论文,他在其中著名地观察到物理学“不经典”,因此应该在量子计算机上进行模拟[2]。在Feynman的观察之后,在1980年代进行了关于量子计算的早期理论工作,例如,Deutsch在量子,通用量子计算机与教会繁琐原则之间的联系[3]之间的联系。然后,随着Shor's Algo-Rithm用于整数保理和Grover的搜索算法在1990年代的中间,研究领域也从理论工作和量子计算硬件方面收集了显着的动力。自[4-6]以来,量子计算的研究领域一直在增长。在量子计算机的应用方面,量子多体系统的模拟由于其科学和工业应用以及与量子硬件的相对紧密的联系,因此受到了最大的关注。从这个角度来看,我们将专注于一个较少的人迹罕至的轨道,即使用量子计算机来模拟经典流体1。到此为止,让我们参考由
b'Inatruction fermi液体范式(1,2)是现代冷凝物质理论的基石之一,提供了多体系统的有效描述,其基本激发是弱相互作用的费米金准式晶粒。费米液体的理论提供了理解为什么金属中的传导电子基本上是非相互作用的颗粒。费米液体可以以纵向密度振荡的形式支持集体模式,这些振荡与经典流体中的声音类似。它们的传播取决于该模式的角频率\ xcf \ x89是否高于或低于粒子间碰撞速率(3)\ xcf \ x84 1 coll。液体3他是一种中性的费米液体,是第一个从第一个声音模式(\ xcf \ XCF \ x89 \ xcf \ xcf \ x84 1 coll,即在流体动态状态)到零1 col(\ xcf xcf xcf xcf xcf xcf)(\ xcf \ xcf \ xcf \ xcf \ xcf \ xcf \ xcf \ x,观察到Coll,即,在无碰撞状态中)(4)。在具有远距离库仑相互作用的电子费米液体中,其中电子电子(EE)散射时间\ xcf \ x84 EE起着\ xcf \ x84 coll的作用,第一,零声折叠到Plasmon模式(5)。在这种模式下,从'
神经退行性痴呆是进行性疾病,由于脑外基质中错误折叠的蛋白的积累,导致不同大脑区域的神经元网络分解,例如淀粉样蛋白,例如淀粉样蛋白或内部神经元或其他大脑的细胞类型。正在使用和实施体内流体中的几种诊断蛋白生物标志物,例如阿尔茨海默氏病。但是,仍然缺乏针对痴呆症的合作性和其他原因的生物标志物。这种基于生物流体的生物标志物可实现诊断和治疗的精确医学方法,允许更多有关潜在疾病过程的信息,并促进临床试验中患者纳入和评估工具的开发。设计研究以发现新型生物流体生物标志物时,技术的选择是重要的起点。但是有很多技术
引言:量子计算是现代科学中最热门的话题之一,它所有望实现的惊人应用远远超出了传统电子计算机的能力范围,至少在某些应用领域是如此 [1]。量子计算的宣言可以追溯到理查德·费曼 (Richard Feynman) 的划时代论文,他在论文中提出了著名的观点:物理学“不是经典的”,因此应该在量子计算机上进行模拟 [2]。根据费曼的观察,量子计算的早期理论工作是在 20 世纪 80 年代进行的,例如 Deutsch 关于量子理论、通用量子计算机和丘奇-图灵原理之间联系的研究 [3]。随后,随着 20 世纪 90 年代中期 Shor 的整数因式分解算法和 Grover 的搜索算法的发表,该研究领域在理论工作和量子计算硬件方面都获得了显著的发展势头。从那时起,量子计算的研究领域一直在持续增长 [4–6]。在量子计算机的应用方面,量子多体系统的模拟最受关注,因为它具有科学和工业应用价值,而且与量子硬件的联系相对紧密,正如费曼最初的提议一样。然而,在本期《观点》中,我们将重点关注一条鲜为人知的领域,即使用量子计算机模拟经典流体 1 。为此,让我们参考由以下四个象限定义的物理计算平面:
