步骤2:连接芯片并启动协议•选择通道进行灌注,并确保单元单层健康且汇合。•通过在渠道中引入新鲜培养基以去除旧培养基,轻轻洗涤细胞。确保通道永远不会干燥。•添加(不直接在通道中)100 µL新鲜介质到入口。将芯片倾斜以产生从入口到出口的缓慢流动。用媒体冲洗入口/插座,直到观察凸还是弯月面,然后再连接到OMI。•转到平板电脑应用程序并加载“再循环”协议,使用户的流速为10 µL/min,持续7天。•一旦流动结算,将OMI在37°C下孵育7天。•灌注4-5小时后,暂停协议并更改介质。此步骤是丢弃保留在循环培养基中的非粘附细胞。
肾缺血再灌注 (I/R) 损伤可导致肾功能不全,严重情况下需要肾脏替代治疗,给患者的康复和生活带来沉重负担。减轻肾脏 I/R 损伤是当前的研究重点。蛋白激酶 C (PKC) 同工酶是肾脏中的主要同工酶,PKCβII 是其主要同工酶。铁死亡在肾脏 I/R 导致的急性肾损伤中起着至关重要的作用。本研究旨在探索 PKCβII 在肾脏 I/R 中的作用及其与铁诱导细胞死亡的潜在关联。该研究使用小鼠肾脏 I/R 模型,检查了各种预处理方法(包括 Ruboxistaurin(一种 PKCβII 抑制剂)和 Erastin(一种铁死亡激动剂))对肾脏损伤的影响。该研究还深入探讨了 PKCβII 在铁诱导细胞死亡中的作用及其潜在机制。研究结果表明,PKCβII 在肾脏 I/R 过程中被激活,抑制 PKCβII 激活可改善肾功能障碍和组织损伤。此外,肾脏 I/R 损伤中铁诱导的细胞死亡显著增加,而抑制 PKCβII 可通过抑制 PKCβII/ACSL4 通路来减轻铁死亡。总之,结果表明 PKCβII 可能参与介导肾脏 I/R 损伤,而针对性抑制 PKCβII 激活可能成为改善肾脏 I/R 损伤的一种新疗法。
心脏和肺移植仍然对终末期心肺衰竭患者的患者有效治疗,代表了数十年研究的高潮以及跨卫生系统的资源利用和协调(1-3)。尽管有这样的进步,但持续的捐助者短缺仍然是提供者和患者的挑战,强调了创新的需求。为了解决可用于移植的胸腔器官短缺,许多中心试图增加循环死亡后器官捐赠的使用(DCD);但是,温暖的缺血时间仍然是器官质量和患者预后的关注点(4)。响应这些关注点,胸腔腹及其热热区域灌注(TA-NRP)已越来越多地被用作一种采购技术,旨在减少缺血中不可逆的器官损害程度,因此解决了DCD捐赠的许多历史关注点(5,6)。
4 这些作者贡献相同 *通信:darcy_pann@hotmail.com 收到:2023 年 5 月 8 日;接受:2023 年 6 月 8 日;在线发表:2023 年 6 月 19 日;https://doi.org/10.59717/j.xinn-med.2023.100015 © 2023 作者。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。引用:Lu H.、Wang Y. 和 Yu R. (2023)。免疫细胞膜包被的纳米粒子用于靶向心肌缺血/再灌注损伤治疗。创新医学 1(1),100015。急性心肌梗死 (MI) 仍然是一种严重的疾病,在世界范围内造成大量死亡和残疾。早期有效地应用血栓溶解疗法或直接经皮冠状动脉介入治疗(PCI)进行心肌再灌注可以减少MI的规模。然而,恢复缺血心肌血流的过程可能导致心肌细胞死亡,即心肌再灌注损伤。由于治疗缺乏靶向性和细胞因子相互作用的复杂性,目前仍然没有有效的治疗方法来保护心脏免受心肌缺血/再灌注损伤(MIRI)。纳米医学一直走在医学的前沿。然而,纳米粒子(NPs)具有几个局限性,例如靶向性差,生物稳定性差以及在体内易被免疫系统清除。因此,提出了一种免疫细胞膜包裹NPs的方法来解决这些问题。最近,通过细胞膜包裹药物进行疾病的靶向治疗受到越来越多的关注。免疫细胞膜包覆纳米粒子的技术进展可实现对病灶的高靶向性、高特异性和低副作用,在治疗MIRI方面具有巨大潜力。本文讨论了细胞衍生的膜包覆纳米系统、其制备工艺以及这些仿生系统在减轻MIRI损伤方面的适用性。最后,还介绍了其临床转化的前景和挑战。
OAR之后的变化在9%至34%之间[2-4]。桨后最常见的并发症包括肺炎(9%),呼吸功能不全(6.5%)和肾脏恶化(8%至13%)[4,5]。结肠缺血(CI)仍然是桨后另一个严重的并发症,主要发生在乙状结肠中[6]。据报道,其发病率在1.6%至7.6%之间[5,7],但CI的死亡率为21%至51%[5,7,8]。除了对患者的潜在致命后果外,健康经济影响是巨大的。根据先前的出版物,CI术后发生时,平均治疗费用加倍[9]。CI的发展很可能是多因素的,最后是基于氧气供求的不平衡。增加术后CI风险的术中因素包括手术时间,围手术期低血压和高血流失。患者特定的危险因素包括女性,年龄较高,吸烟,动脉高血压,肾功能不全和心力衰竭[5,10]。在OAR期间,下肠系膜动脉(IMA)的术中连接是一种明显的干预措施,被广泛讨论为CI的危险因素[11-14]。各种研究表明,IMA重新植入和高长期通畅的保护作用,而没有增加输血要求或严格延长工作时间[11,15,16]。血管外科学会(SVS)实践指南建议,在CI风险增加时,应考虑专利IMA的重新植入[17]。欧洲心脏手术协会指出,IMA重新植入对某些患者亚组(即减少回流,术中CI的视觉迹象)显示出好处,但没有对决策做出明确的建议。但是,关于哪些特定因素导致这种怀疑尚无明确的共识。因此,在开放主动脉手术中,仍不清楚可能会从IMA重新植入中受益的患者的鉴定。为此,已经研究了各种技术,目的是术中量化结肠微灌注[18,-22]。18-22尽管有多种测量方法的可用性,但目前尚无统一应用的技术来测量桨期间的结肠灌注。这项试验研究研究了组织光谱设备“氧气看到”(O2C)的术中应用,该设备将激光多普勒流量计和分光光度计结合在一起。这项研究的目的是研究在替换室内主动脉替换前后术中术中术中术中术中术中变化的值,以及这些参数是否适合于与杂技学评估相比,这些参数是否适合量化结肠微灌注。最终的问题是,这种定量评估工具是否可以指导IMA重新植入的决策。
引言急性心肌梗死 (AMI) 是全球范围内重大的公共健康问题、心力衰竭 (HF) 的主要原因和主要死亡原因 (1–3)。AMI 患者的标准治疗是直接经皮冠状动脉介入治疗 (PPCI),以再灌注并恢复缺血心肌的氧合血流 (4, 5)。然而,PPCI 却伴有再灌注损伤,这会加剧组织损伤并增加心肌细胞死亡,导致可挽救的心肌减少。据估计,再灌注损伤约占 AMI 后最终梗死的 50% (4, 6)。尽管经过数十年的研究,但尚无任何药物干预措施成功地转化为常规临床实践以减轻缺血-再灌注 (I/R) 损伤的有害影响 (7–9)。因此,减轻心肌 I/R 损伤仍然是心血管医学中尚未满足的需求,以防止缺血事件后发展为慢性 HF。I/R 的潜在机制复杂且多因素,但动物模型数据表明,缺血性心肌细胞内的线粒体功能障碍是关键因素(10-12)。在 I/R 损伤期间,线粒体功能对心肌细胞维持细胞能量、氧化还原和活力至关重要(13)。I/R 损伤引起的线粒体缺陷可导致线粒体介导的细胞凋亡,包括线粒体膜电位受损(ΔΨ)、钙超载和氧化应激(14, 15)。这被认为是由于 I/R 期间氧气和营养物质供应不连续而导致代谢失衡所致(16, 17)。了解代谢
抽象的背景近红外荧光(NIRF)使用吲哚酰绿色(ICG)允许可视化灌注,并在进行其他测量后提供灌注,并提供客观的灌注参数。因此,它在预测足够的组织灌注方面具有很大的潜力。但是,关于骨组织,使用ICG的NIRF成像的可行性和实用性的证据非常有限。方法在荷兰的三级医院进行了前瞻性单中心试验研究。包括2021年8月至2022年8月进行自体乳房重建的患者。在手术期间,静脉注射ICG(0.1 mg/kg),并在注射后直接制作4分钟的荧光血管造影。在肋骨的横截面横向表面上生成了5毫米感兴趣区域(ROI)生成的事后时间强度曲线。强度增加的第一个时刻被定义为T0。荧光参数包括ICG的入口和出口。结果九岁和11ribswerecluded。三个曲线显示出陡峭且排列良好的入口和出口。在所有其他患者中,曲线显示出更加明显的入口和出口。骨膜测量在9个肋骨中进行。术中未观察到与ICG注射有关的不良事件。结论这项可行性研究表明,使用ICG进行定量的NIRF成像可以提供内骨肋骨灌注的客观参数。需要较大的前瞻性序列来研究使用ICG术中骨骼灌注的NIRF成像的值,并为适当的骨灌注建立截止值。
图4:管道生产的工作台场景,以评估注册和掩盖精度。分别通过细绿色和蓝色线条显示了自由表面的白色和曲面。ASL体积脑面膜轮廓显示在洋红色中。白色盒子表示ASL获取的视野,转变为ASL网格的T1W空间。青色线(在矢状视图中在小脑的底部看到)表示位于视野外的ASL脑面膜的一部分。Greyscale中的基本图像是完整335
引言嵌合抗原受体T细胞(CAR-T)疗法为治疗诸如血红蛋白病,免疫缺陷和各种形式的癌症等疾病提供了巨大的潜力。在这些疗法中,病毒载体是创建最终CAR-T产品的关键组成部分。病毒载体促进了感兴趣的基因的传递,这有助于T细胞识别癌细胞。慢病毒通常被选择为病毒载体,因为它在转导分裂和非分裂细胞及其既定的安全概况方面的有效性(Sinn等,2005)。使用LV进行了200多次正在进行的临床试验,用于体内细胞修饰或体内疗法,以及最近对几种EX Vivo LV疗法的FDA批准,正在发生病毒载体需求的主要激增(ClinicalTrialStrials.gov)。低慢病毒滴度生产从当前的细胞培养物中获得的生产需要大量生产量来满足需求,这意味着大规模的培养基制剂和产品存储以及长期而复杂的生物反应器种子火车和病毒制造过程。LV的不稳定性质也带来了挑战,在室温下半衰期为8-40小时,在37°C下为8 - 12小时,这可以进一步降低有效的滴度(Dautzenberg等,2021,Labisch等,2021,2021,以及Higashikawa和Chang and Chang,2001年)。解决这些大规模制造缺点的一种方法是加强LV生产过程。此外,TFDF灌注可以在72小时的时间内将LV连续收获到4°C的储存容器,以维持LV功能滴度(Labisch等,2021)。最近的出版物表明,使用切向流动深度过滤(TFDF)灌注技术用于LV制造可以提高工艺生产率并降低成本(Tran等,2022; Tona等,2023)。TFDF疗法的这种连续的轻柔收获特征LV灭活问题,该问题会对批处理模式下的LV产生产生负面影响。TFDF技术提供2 - 5 µm的孔径深度滤波器,以切向流量模式运行,以保留生物反应器中的细胞和细胞碎屑,同时可以连续收获废物代谢物和分泌的载体。