收到:2023年6月7日修订:2023年7月18日接受:2023年8月9日发布:2023年8月31日摘要 - 没有锂离子电池,电动汽车就无法运行。但是,对电池寿命的担忧减慢了电动汽车的传播。电池组内的温度对于尽可能长时间保持健康电池至关重要。冷却系统很有帮助,因为它可以防止电池太快死亡。使用有限元分析,已经使用轴向辐射热路线检查了圆柱电池模块的热行为。已经评估了锂离子细胞的热量产生速率和热传输参数。圆柱形锂离子细胞的一个表面在径向或轴向上加热,而其余表面保持在恒定的环境温度。
目前,许多可回收的塑料都无法使用,因为它们的组成很难确定,因此在垃圾填埋场中被丢弃或燃烧。。当前的常规分析方法一次仅一次性塑料的量实际上只有很少的塑料(<0.1 g)。该样本量不足以代表大量的再生塑料,在这些塑料中,局部种类的聚合物可能会有很大差异,如图1.²Veridis所示,它开发了一种热分析方法,用于分析称为MADSCAN的聚合物(Massive DSC分析),该方法通过增加最高50 g的样本大小来解决此问题。当前的设置为30克。这项研究的目的是使用MADSCAN技术构建合适的数据库,该数据库可用于使用拟合分析来量化未知的聚合物样品。..图1:由局部不同聚合物组成的再生塑料示例。⁴
立方体卫星是用于空间研究的微型卫星,每个单位的质量不超过 1.33 公斤。由于其制造成本低和应用灵活性,它们被广泛应用于太空应用。由于它们使用商用现货组件,因此必须考虑 1 单位立方体卫星内部组件的热性能。本文对 1 单位立方体卫星进行了瞬态热分析,以分析其从运载火箭进入轨道后的前 29 秒内的行为。瞬态热分析得出的温度范围超过了最佳极限。因此,为了减少热量耗散,卫星的热管理系统主要包括两种类型:主动控制系统和被动控制系统。为了将关键组件维持在其工作温度,实施了被动热控制。使用隔热带和多层绝缘来分析 1 单位立方体卫星的内部组件。使用石墨纤维隔热带和气凝胶多层绝缘作为内部组件,发现 1 单位模块化立方体卫星更适合在低地球轨道条件下使用。关键词:立方体卫星;瞬态热分析;被动热控制;热带;MLI
摘要 - 如今,缩小 HEMT 器件的尺寸对于使其在毫米波频域中运行至关重要。在这项工作中,我们比较了三种具有不同 GaN 通道厚度的 AlN/GaN 结构的电参数。经过直流稳定程序后,96 个受测 HEMT 器件的 DIBL 和滞后率表现出较小的离散度,这反映了不可否认的技术掌握和成熟度。对不同几何形状的器件在高达 200°C 的温度下的灵敏度评估表明,栅极-漏极距离会影响 R 随温度的变化,而不是 I dss 随温度的变化。我们还表明,中等电场下的 DIBL 和漏极滞后表现出非热行为;与栅极滞后延迟不同,栅极滞后延迟可以被热激活,并且无论栅极长度的大小如何都表现出线性温度依赖性。
出于这个原因,在目前的工作中,通过红外(IR)光谱,质子(1 H NMR)和碳(1 H NMR)和碳(13 c nmr)核磁共振,高分辨率质谱(HRMS)和单一晶体x-RAID(cyrd x-RAID)来介绍Chalcone quinoline-1,3-苯甲二氧化碳(5)的合成和表征(5)(5)。同样,研究了对人红细胞的吸收和排放行为,热稳定性(TG/DTA)和溶血效应的影响。理论DFT计算用于获得有关电子和分子结构以及NLO特性的更多知识,鉴于5在适用于生物医学的光学设备的开发中具有重要潜力。重要的是要注意,化合物5提出的结果是从理论计算中得出的,并将其与已知的其他化合物进行比较,因为直接实验数据不可用。进行此比较是为了对其潜在的NLO行为进行初步评估。
摘要:在本文中,提出了一种详细的三维,瞬态,有限的元素方法链接链接nh000 gg 100 a。在名义(100 a)和自定义条件(110和120 a)下进行保险丝运行过程中的热性能是进行分析的主要重点。工作涉及保险丝链接(陶瓷体)的外部元素和内部(当前电路)的元素。已经描述了电流的分布及其对操作模式期间保险丝构造部分温度的影响。使用数值模型测量温度分布,功率损耗和能量耗散。为了验证和验证模型,两个独立的科学家团队执行了实验研究,在此期间,在涉及额定电流的设备的不同部分上测量了温度。最后,将两组结果组合在一起,并将其与从仿真测试中获得的结果进行了比较。强调了经验测试结果与模拟工作之间可能的显着相关性。
更大的可再生能源渗透率需要增加能源存储容量。需要长时储能 (LDES) 来平衡间歇性可再生能源供应与每日、每周甚至季节性的供应变化。在这些时间尺度上,传统的电化学电池变得不经济。固体颗粒热能存储 (TES) 是解决此问题的可行解决方案。固体颗粒可以达到比传统聚光太阳能 (CSP) TES 系统中使用的熔盐更高的温度 (> 1,100 ◦ C)。更高的温度可产生更高的功率循环热电转换效率。然而,在这些较高的温度下,更大的热损失和绝缘材料成本可能会抵消效率效益。在这项工作中,对能够储存 5.51 GWht 的全尺寸 3D 安全壳筒仓的绝缘设计进行了热分析,用于 LDES 用于电网电力。使用瞬态 FEA 方法模拟了提出的操作条件。经过 5 天(120 小时)的储存,在设计储存温度 1,200 ◦ C 下实现了 < 3% 的热能损失。考虑并满足了材料的热极限。还研究了存储系统性能对操作、气候和时间变化的敏感性。这些变化对系统的热效率影响很小,但对绝缘设计的其他方面确实具有重大影响。
客户满意度、创新、灵活性和高品质是 LINSEIS 的代表。凭借这些基本原则,我们公司在领先的科学和工业组织中享有卓越的声誉。多年来,LINSEIS 一直提供高度创新的基准产品。LINSEIS 热分析业务部门涉及用于研发和质量控制的全系列热分析设备。我们支持聚合物、化学工业、无机建筑材料和环境分析等领域的应用。此外,还可以分析固体、液体和熔体的热物理性质。LINSEIS 植根于强大的家族传统,自豪地传承到第三代,保持了其核心价值观和对卓越的承诺,这些价值观和承诺已在家族领导层中传承下来。这种世代相传加强了我们对创新和质量的奉献精神,体现了真正的家族企业的精髓。LINSEIS 提供技术领导地位。我们按照最高标准和精度开发和制造热分析和热物理测试设备。由于我们的创新动力和精度,我们是热分析设备的领先制造商。热分析测试机的开发需要大量研究和高精度。LINSEIS 公司投资于这项研究,以造福我们的客户。
摘要:GW501516,也以Cardarine的名称而闻名,是一种合成的过氧化物组增生剂活化受体三角洲(PPR-δ)激动剂,用于治疗代谢性疾病和心血管疾病。在各种溶剂和混合物中完成了广泛的多晶型筛选,以探索其生长多晶型物的能力。使用单晶X射线衍射阐明了四个多晶型物的晶体结构,而一种结构是通过粉末X射线衍射方法溶液的。通过计算方法研究了固态特征(分子间相互作用的性质)。通过热DSC分析和粉末上的X射线衍射进一步研究了多晶型物。从药物的角度来看,也分析了多晶型物的稳定性和溶解度。
一个3000平方英尺的干室设备以原材料开始,并制造并组装成品热电池。在此处对热电池进行预测试和测试后分析,并使用扫描电子显微镜进行研究和故障分析。我们还使用干燥空间对电池组件进行热分析,并使用差扫描量热法,差分热分析和热重分析进行热分析。在一个较小的较小的干室中,有全通风引擎盖,我们组装了锂电池。在其他实验室中,在几个地区进行了研究,包括锂插入插座阴极,锂电解质和可充电电池阴极。分布在我们的实验室中是电解质蒸馏和反流,阴极滚动,