在化石燃料上运行的常规汽车最近被认为是环境污染的重要贡献者之一,尤其是考虑到它们与全球人群有关的数量越来越多。电动汽车(EV)被认为是解决此问题的绝佳解决方案。最困难的挑战是使用高效且负担得起的电池增加电动汽车的产量。EV中使用的所有类型的电池都以温度形式发生功率损耗。电池热管理系统(BTM)的开发是一个强大的障碍。新概念旨在通过将其与热电发电机(TEG)集成来提高热电冷却器(TEC)效率,该效率是通过制造TECTEG模型来完成的。组合TEG和TEC的目标是利用在TEC热侧产生的废热,并将其转换为可用于喂养TEC并提高其效率的流。
工程)(ABES技术研究所)(ABES技术研究所)(ABES技术研究所)摘要:电子电动机的关键要素,可确保汽车电动机的有效操作和耐用性是热管理机器。可以为机器充电以维护电池,电力电子设备和电动机的理想工作温度范围。由精心设计的热管理设备创建了一个强大的热环境,该设备可以提高常规汽车的效率,延长电池寿命并增加车辆的品种。本文将总结各种热控制设备添加剂,其目的以及为数字电机创建有效的热管理系统的困难。本文还将介绍创建热控制设备以及行业未来过程的最新发展。关键字:电池热管理,电子车辆,ESP32。r eceived 2023年5月8日; r于2023年5月17日; 2023年5月19日的ceccept©作者2023。在www.questjournals.org
取决于应用程序,Henkel具有多种热接口材料(TIM)解决方案,可通过有效的热管理支持改善高功率密度线路卡的系统级性能和可靠性。在大型,高性能的第1层/第2层开关ASIC,FPGA和GPU设备中,使用垫,膜,液体和凝胶培养基中的一系列配方提供有效,有效的热量消散。对于不需要较大散热器附件的IC设备,Henkel的低模量,高电导率Bergquist GapPad®提供出色的可比性和低应力热性能。作为常规热润滑脂的替代方法,斜孔相变的tims允许在糊剂施加的公式中具有类似的易于易于应用和柔韧性,在特定温度下会变成液体。但是,斜孔相变的tims不会遭受“抽水”的损失,并且随着时间的推移通常会经历润滑脂,因此降低了热性能。
I.简介嵌入式系统是可能设计或以容量固定并为单个目的或为较大系统中的单个函数创建的计算机组件和软件的集合。可以在各种项目中找到一个嵌入式系统,包括工业机械,农业和工艺部门设备,车辆,医疗设备,相机,家用电器,飞机,自动售货机,玩具和移动设备。尽管嵌入式系统是计算机系统,但它们可以具有简单的用户界面(UI)或精心设计的桌面应用程序(GUI),例如在移动设备和具有嵌入式系统的设备中看到的,这些系统旨在执行单个目的。按钮,LED,触摸屏和其他一些类型的用户界面是可行的。此外,某些系统采用远程用户界面。微处理器或微控制器可用于嵌入式系统。在两种情况下都存在一个中央集成电路(IC),通常是为实时过程进行计算的。尽管微处理器在表面上相同,但后者仅包含一个中央处理设备(CPU),该设备要求添加升级套件(例如内存芯片),而前者则构建以独立运行。微芯片或微控制器可用于嵌入式系统。在两种情况下都存在一个主要的集成电路(IC),该电路通常是为实时过程进行计算的。
二氧化硅的衰减非常低的衰减促进了基于纤维的数据通信的普遍性。今天被认为是玻璃的内在特性,但这仅仅是因为外部损失来源(因此是热量)已被去除。过渡金属杂质,特别是Cu和Fe,在1970年代建立的通信波长中扮演着最重要的作用[5,6]。要消除这些外部吸收剂,以玻璃(例如SICL 4)和杂质(例如Fe 2 Cl 6)前体之间的蒸气压差形式的热力学,并立即使用。对这种重要性的良好回顾,但在当前的光纤社区中被遗忘了。[7]。通过涉及氯的明智干燥方案,在长途纤维中还减轻了玻璃中OH物种引起的衰减。现代二氧化硅纤维基本上没有外部损失来源,因此产生热量,这完全是由于化学蒸气沉积(CVD)过程的材料科学。但是,如第2.1.2和2.2节所述,CVD对本质上低损耗纤维的祝福在纤维核的组成可卸载性方面会导致诅咒[8]。
近年来,木质复合材料凭借其可持续性及固有的层状多孔结构,在电磁干扰(EMI)屏蔽领域受到了广泛关注。木材的通道结构常用于负载高导电材料以提高木质复合材料的EMI屏蔽性能,但如何利用纯木材制备超薄EMI屏蔽材料的研究很少。本文首先通过平行于年轮切割木材得到超薄单板,然后通过简单的两步压制和碳化制备碳化木膜(CWF)。超薄厚度(140 μ m)、高电导率(58 S cm − 1 )的CWF-1200的比EMI屏蔽效能(SSE/t)可达9861.41 dB cm 2 g − 1,远高于已报道的其他木质材料。此外,在CWF表面原位生长沸石咪唑酯骨架-8(ZIF-8)纳米晶体,得到CWF/ZIF-8。CWF/ZIF-8表现出高达46 dB的EMI屏蔽效能(SE),在X波段表现出11 330.04 dB cm 2 g − 1的超高SSE/t值。此外,超薄CWF还表现出优异的焦耳加热效应。因此,超薄木基薄膜的开发为木质生物质取代传统的不可再生且昂贵的电磁(EM)屏蔽材料提供了研究基础。
热管理对于锂离子电池的安全性、性能和耐用性至关重要,锂离子电池在消费电子产品、电动汽车 (EV)、航空航天和电网级储能中无处不在。随着电动汽车在全球范围内的大规模普及,锂离子电池越来越多地在低温、高温和快速充电等极端条件下使用。此外,由电池热失控引起的电动汽车起火已成为电动汽车广泛普及的主要障碍。这些极端条件对热管理提出了巨大挑战,需要采取非常规策略。电池的热、电化学、材料和结构特性之间的相互作用进一步增加了挑战,但也为开发创新的热管理策略提供了机会。本综述分析了极端条件下热管理面临的挑战。然后,重点介绍了两个方向的进展。一个方向是基于传热原理改进电池热管理系统,该系统通常位于锂离子电池的外部。另一个方向是设计新型电池结构,这些结构通常位于锂离子电池内部,例如带有嵌入式传感器和执行器的智能电池。后一种方法可以大大简化甚至消除极端条件下对电池热管理的需求。建议进行整合这两种方法的新研究。[DOI:10.1115/1.4056823]
各种程序可用于数学建模和仿真,这些程序根据特定应用程序使用:ComsolMultiphysics®,OpenFoam®,OpenModelica®,MSExcel®。每个程序就要建模的过程,建模复杂性,速度和准确性都提供个人优势和缺点。建模是根据特定应用程序进行的,具体取决于必要的物理过程,例如传热,传质和流量(CFD)或力学。如果需要,这些过程也可以组合模拟以获得所有相关结果。比例尺从微观到宏观水平范围。与实验研究相比,模拟的优势是减少参数变化的物质工作,尤其是时间努力的限制,因此,对发展的快速反馈以及识别最佳参数的可能性。尤其是在复杂模型的情况下,建议(部分)验证,并且可以借助现有的实验室能力来覆盖热表征。