编辑信息智能/多功能材料和结构广泛用于医疗,汽车,能源和航空航天技术,用于诸如力传感,致动,能量收集和结构健康监测等应用。在过去的几十年中出现了大量表现出有趣的多物理现象的智能材料,但其中只有很少的部分已成功地转化为工程应用。大多数工程应用程序,例如,由于其强大的响应,可重复性和广泛的可用性,使用压电材料和形状的记忆合金(SMA)。因此,有必要增强现有智能材料的响应以满足技术需求。此外,随着人工智能,仿生学,纳米技术等领域的最新科学进步,对智能/响应式材料的需求越来越大,可以实现微型化,提高数据存储和能源效率。要解决这些更大的问题并更好地利用现有的智能材料,重要的是,各种科学和工程社区的研究进步都重要。
摘要 在本文中,我们提出了一种新颖的数学模型,该模型在一定程度上复制了一般卷对卷纳米压印光刻 (R2RNIL) 制造工艺的工作方式。我们首先确定制造商在提高生产率和控制制造过程方面面临的一些当前挑战和问题。接下来,我们描述和分析构成典型 R2RNIL 工艺的主要物理现象以及用作涂层的聚合物的典型材料特性,并制定符合物理定律的数学模型。然后,我们提出一些数值模拟,这些模拟定性地再现了实验中发现的几个特征,这些特征是在使模型适合数值计算的线性化假设下发现的。此外,我们确定了影响 R2RNIL 的一些关键工艺参数和材料特性,以及它们如何用于材料设计和工艺控制。最后,我们将讨论未来的工作和一些可以在一般框架范围内研究的应用。 关键词:多相多尺度建模、粘弹性材料、光化学键合、混合物力学
本文首先提出,电子等物理实体和光子等宇宙实体属于宇宙的两个不同层次。当我们说空间是真空时,我们指的是物理真空,而不是宇宙真空。本文提出,我们观察到的空间是宇宙物质的结构。我们不能假设有某种东西填补了空间的空虚。本文假定宇宙物质的结构创造了这种空虚,以促进电磁波和引力等物理活动。其次,空间结构是一种空间宇宙现象,而时间是由物理实体运作的物理现象。时空连续体是由物理时间获得宇宙空间结构而产生的。本文的第三部分解释了空间结构的结构和成分。该结构本身解释了几种宇宙现象,包括电磁波、引力、光、磁力、暗物质和暗能量。通过多学科的统一来验证论文的哲学正确性,通过与著名实验结果的逻辑一致性来验证其科学正确性。
我目前的研究重点是开发和集成用于量子计算的硅自旋量子比特 (qubit) 技术。量子计算机代表了一种革命性的计算方法,其运行原理与传统计算机的原理根本不同。这些机器的核心是量子比特,可以通过各种方法实现,每种方法都有独特的属性。当前的商用量子计算机利用超导、冷原子和离子阱等技术,所有这些技术都依赖于不同的物理现象。我的研究专门探索硅自旋量子比特。硅是传统计算中晶体管的基础材料,为量子比特实现提供了显著的优势。它与现有半导体制造工艺的兼容性为大规模量子计算机开发提供了潜力。虽然存在使用光子的替代方法,但最佳量子比特技术仍是一个悬而未决的问题。正在进行的研究和开发
摘要:对光与物质之间强耦合的研究是研究的重要领域。它的重点不仅源于出现众多引人入胜的化学和物理现象,而且通常是新颖和意外的,而且还源于其为新颖的化学,电子,电子和光子设备设计核心组件设计的重要工具集,例如量子,量子量,量子,量子,激光,放大器,模块化器,传感器,传感器,以及更多。已经证明了各种配置系统和光谱制度的强耦合,每个耦合均具有独特的功能和应用。从这个角度来看,我们将重点关注该研究领域的一个子区域,并讨论超材料和光子频率下的强烈耦合。超材料本身就是电磁谐振器,作为“人工原子”。我们概述了最新进步的概述,并概述了这一跨学科科学的重要和有影响力的领域中可能的研究指示。
摘要:我们在薄膜𝜒(2)谐振器中基于非线性多辅音光学元件提出了一个片上陀螺仪,该光学具有同时结合了高灵敏度,紧凑的外形和低功率消耗的谐振器。我们理论上分析了一种新型的整体度量 - 多种非线性光子腔的Fisher信息能力 - 以充分表征我们陀螺仪在娱乐性量子噪声条件下的灵敏度。利用贝叶斯优化技术,我们直接最大化了非线性多辅助渔民信息。我们的整体选择方法策划了多种物理现象的和谐融合,包括噪声挤压,非线性波混合,非线性临界耦合和非稳态信号,都封装在单个传感器谐波中,从而显着增强敏感性。我们表明,与射击有限的线性陀螺仪具有相同的占地面积,固有质量因素和功率预算相比,可以进行约470倍的改进。
可观察的材料特性由各个长度尺度上的物理现象确定。在量子标尺上,核与电子之间的相互作用决定了化学键,这又导致材料的特定晶体结构,可压缩性或颜色。在微观范围内,材料特性取决于晶格缺陷的集体行为,例如空位,位错或晶界。数学方程式描述这些现象已有很长时间了。这些可以是微观尺度上的第一原理表达式(量子尺度),现象学或热力学表达式。由于有效的算法和更快的计算机,这些方程式可以有效地解决越来越多的情况。以这种方式,在进行实验之前,可以通过模拟来解释和/或预测材料的可观察性能。通过动手练习,您将在本课程中学习如何在一个或多个长度尺度上计算固体的不同特性。案例研究将概述用于材料科学家的计算工具,并凝结物理学家在原子层及以上可以理解材料,甚至可以设计它们。
部分微分方程是用于描述各种物理现象的基本数学工具,从流体动力学和热传导到量子力学和财务建模。解决PDE对于理解和预测这些系统的行为至关重要,但是传统的数值方法(例如有限差异,有限元和光谱方法)在处理复杂,高维问题时通常会遇到重大挑战。近年来,机器学习已成为对经典数值方法的有力替代方案或补充,提供了有效解决PDE的新方法。机器学习驱动的PDE的数值解决方案有可能通过提供更准确,更快和可扩展的解决方案来彻底改变计算科学。将机器学习与数值PDE求解器集成的关键动机之一是ML模型以高精度近似复杂函数及其导数的能力。神经网络,尤其是深度学习模型,在学习大型数据集中学习复杂的模式和关系方面取得了巨大的成功。
如今,材料科学正在通过利用扰动技术来研究其动力反应,从而朝着对非平衡状态的材料的理解和控制。 从这个角度来看,超时光脉冲的使用似乎是一种相关方法,因为它可以选择性地解决固态系统,更尤其是电子的不同程度的自由度。 这种方法可以帮助解读电子相关性引起的物理现象,并补充一种更传统的方法,其中在热力学平衡下研究了材料的相图。 在这里,我们结合了飞秒光谱光谱和高压设置,以监视v 2 O 3薄纤维在压力驱动的绝缘子到金属过渡的超平衡光响应。 实验结果表明,在V 2 O 3薄片中使用相干声子作为热力学相标记的可能性。 此外,超快相干声子模式(1 g字符)的频率行为似乎反映了晶格和电子自由度之间的强耦合在临界压力周围的频率下方的明显下降的晶格和电子自由度之间的强烈耦合。如今,材料科学正在通过利用扰动技术来研究其动力反应,从而朝着对非平衡状态的材料的理解和控制。从这个角度来看,超时光脉冲的使用似乎是一种相关方法,因为它可以选择性地解决固态系统,更尤其是电子的不同程度的自由度。这种方法可以帮助解读电子相关性引起的物理现象,并补充一种更传统的方法,其中在热力学平衡下研究了材料的相图。在这里,我们结合了飞秒光谱光谱和高压设置,以监视v 2 O 3薄纤维在压力驱动的绝缘子到金属过渡的超平衡光响应。实验结果表明,在V 2 O 3薄片中使用相干声子作为热力学相标记的可能性。此外,超快相干声子模式(1 g字符)的频率行为似乎反映了晶格和电子自由度之间的强耦合在临界压力周围的频率下方的明显下降的晶格和电子自由度之间的强烈耦合。
本文介绍了“电路”教育支持工具的开发过程。该工具名为iCASS(交互式电路与系统研讨会)。iCASS可以通过简单的GUI(图形用户界面)操作,利用交互式动画和“声音”来了解模型的“运动”。由于该工具使用WWW(万维网)系统作为IT(信息技术)教育,因此可以作为电子学习工具引入。在此工具中,不使用键盘上的数值。因此,学生无需处理超过必要范围的繁琐数值即可了解物理现象(工程模型的“运动”)。此外,iCASS可以通过将实际模型与网络上的动画连接起来,避免模拟的“混乱”。在这里,为了连接实际模型和 iCASS,我们使用 PICNIC(使用外围接口控制器的网络接口卡)。通过在实际课堂上使用 iCASS,可以提高学生的理解水平,并可能吸引更多学生的兴趣。建议的电子学习工具可在 http://www.sia.co.jp/ ~ icass/index 找到。html。