在人际交往中,情绪非常重要。词语、语音语调、面部表情和动作等属性都可用于描绘一个人的感受。然而,脑机接口 (BCI) 设备尚未达到情绪解读所需的水平。随着机器学习算法、干电极技术以及脑机接口在现实世界中对正常人的不同应用的快速发展,从脑电图数据中进行情绪分类最近引起了广泛关注。脑电图 (EEG) 信号是这些系统的关键资源。使用脑电图信号的主要好处是它们反映了真实的情绪,并且很容易被计算机系统解析。在这项工作中,使用通道选择预处理识别了与好情绪、中性和负面情绪相关的脑电图信号。然而,到目前为止,研究人员对各种情绪状态之间联系的具体了解有限。为了识别脑电图信号,我们使用了离散小波变换和机器学习技术,如循环神经网络 (RNN) 和 k-最近邻 (kNN) 算法。最初,使用分类器方法进行通道选择。结果,通过整合来自这些通道的 EEG 片段的特征来创建最终特征向量。使用 RNN 和 kNN 算法,对具有连接的积极、中性和消极情绪的最终特征向量进行独立分类。计算并比较了两种技术的分类性能。使用 RNN 和 kNN,平均总体准确率分别为 94.844 % 和 93.438 %。
单元描述Math1010中引入的线性代数和微积分的基础进一步探索和扩展。用代数涵盖的主题包括:反矩阵,决定因素,矢量空间和子空间,特征值以及特征向量以及线性变换。在微积分中,主题包括:限制,连续性和衍生物,数值集成,多项式,序列和序列和微分方程的进一步发展。另外,引入了两个或多个变量的复数和计算。学生在整个课程中都利用数学软件来支持和加强解决各种理论和实际问题的问题。
特征向量2,导致1x128显着矢量。由于RNN-FC网络中权重的随机初始化,因此不能保证对同一组折叠功能进行训练的模型会收敛到一组最终权重。因此,我们重新训练了20次交叉验证的模型的集合,并类似地重新计算了每个样品的显着矢量。最终显着图是通过平均所有重复样本的归因图并在0到1之间的标准化来计算的。我们使用除一个(通道112)以外的所有通道的HG特征重复了此过程
摘要:传统的飞机维修保障工作主要基于结构化数据。非结构化数据,如文本数据,尚未得到充分利用,这意味着资源的浪费。这些非结构化数据蕴含着巨大的故障知识库,可以为飞机维修保障工作提供决策支持。因此,本文提出了一种基于文本的故障诊断模型。所提方法利用Word2vec将文本单词映射到向量空间,然后将提取的文本特征向量输入基于堆叠集成学习方案的分类器。使用真实的飞机故障文本数据集验证了其性能。结果表明,所提方法的故障诊断准确率为97.35%,比次优方法提高了约2%。
经过简短的历史审查,我们将从波浪力学的角度介绍量子理论的基础。这包括对波函数,概率解释,操作员和schrödinger方程的讨论。然后,我们将考虑简单的一维散射和绑定的状态问题。接下来,我们将涵盖从更现代的角度进行量子力学所需的数学基础。我们将回顾矩阵力学和线性代数的必要元素,例如查找特征值和特征向量,计算矩阵的痕迹,并找出矩阵是遗传学还是单位。然后,我们将介绍狄拉克符号和希尔伯特的空间。然后,量子力学的假设将被形式化并用示例进行说明。
人体的中央控制单位是大脑。肿瘤未在早期诊断出来,然后会影响大脑意味着它会导致患者的死亡。磁共振图像(MRI)不会产生任何有害的辐射,并且是基于肿瘤等级的区域计算和分类的更好方法。如今,没有自动系统来检测和识别肿瘤的等级。 本文提出了脑肿瘤分类,该分类分为四个阶段,作为预处理,分割,降低和提取,分类。 分割脑肿瘤是肿瘤检测和分类的基本步骤之一。 中位过滤器用于消除k含量簇的噪声和组合,而大小的二进化用于分割脑肿瘤。 dwt(离散小波变换)和GLCM(灰度级别共发生矩阵)用于变换和空间特征提取和PCA(主要成分分析)可降低特征向量以维持脑MRI图像的分类准确性。 为了进行MRIS分类的性能,重要的功能已提交给KSVM(内核支持向量机)。拟议的系统将减少处理时间并可以实现更好的准确性。 所提出的方法已在Brats 2015数据集上进行了验证。如今,没有自动系统来检测和识别肿瘤的等级。本文提出了脑肿瘤分类,该分类分为四个阶段,作为预处理,分割,降低和提取,分类。分割脑肿瘤是肿瘤检测和分类的基本步骤之一。 中位过滤器用于消除k含量簇的噪声和组合,而大小的二进化用于分割脑肿瘤。 dwt(离散小波变换)和GLCM(灰度级别共发生矩阵)用于变换和空间特征提取和PCA(主要成分分析)可降低特征向量以维持脑MRI图像的分类准确性。 为了进行MRIS分类的性能,重要的功能已提交给KSVM(内核支持向量机)。拟议的系统将减少处理时间并可以实现更好的准确性。 所提出的方法已在Brats 2015数据集上进行了验证。分割脑肿瘤是肿瘤检测和分类的基本步骤之一。中位过滤器用于消除k含量簇的噪声和组合,而大小的二进化用于分割脑肿瘤。dwt(离散小波变换)和GLCM(灰度级别共发生矩阵)用于变换和空间特征提取和PCA(主要成分分析)可降低特征向量以维持脑MRI图像的分类准确性。为了进行MRIS分类的性能,重要的功能已提交给KSVM(内核支持向量机)。拟议的系统将减少处理时间并可以实现更好的准确性。所提出的方法已在Brats 2015数据集上进行了验证。
生成式 AI 是任何类型的 AI 系统,可以根据提示生成文本、图像或其他类型的媒体。在撰写本文时,这些工具使用大型语言模型,根据一组训练数据产生结果。该技术与搜索引擎特征向量算法不同,这意味着结果可能比 Google 事实搜索更不可靠。该技术与传统的自然语言处理 (NLP) 聊天机器人不同,后者通常需要人工输入来优化特定用例的结果。在大多数模型中,训练数据通常不链接到互联网或任何其他实时更新。因此,任何内容都不会了解自模型上次提取日期以来的事件,该日期可能是几个月到几年的时间。
1实施各种灰度转换以增强图像。2实施直方图均衡技术。3编写一个程序,以在输入图像上应用卷积过程以进行图像平滑。4实现定向梯度(HOG)的直方图进行特征提取。5编写一个程序,以在输入图像上应用比例不变特征变换。6实施视频中背景减法的框架差异技术。7实施主成分分析以计算特征向量以降低维度。8实施对象检测算法yolo。9实现R-CNN算法进行对象检测。10使用光流技术实施运动估计。11实现对象识别。12实现面部表达识别。
单元I数学物理学维度分析:微分方程(普通和部分) - 方程顺序 - 梯度,发散,卷曲和laplacian的表达式 - 矢量代数和矢量计算 - 高斯分歧定理 - 格林的定理 - Stokes的定理。矩阵:Cayley - 汉密尔顿定理,矩阵倒数 - 特征值和特征向量。多项式:Hermite,Bessel和Legendre功能。特殊功能:beta和伽马功能。概率:基本概率理论 - 随机变量 - 二项式 - 泊松和正态分布。复杂变量:分析函数 - 奇异点 - 库奇的积分定理和公式-Taylor's和Laurent的扩展,杆子,残基的计算以及积分的评估。积分变换:傅立叶系列和傅立叶变换及其属性。
考虑具有k非零条目的n维二进制特征向量。可以将矢量作为与n个项目有缺陷的n个项目相对应的入射向量。定量组测试(QGT)问题旨在通过查询返回有缺陷项目总数的项目的子集来学习此二进制特征向量。我们在非自适应方案下考虑了这个问题,在非自适应方案中,子集的查询是集体设计的,并且可以并行执行。大多数现有的有效的非自适应算法用于sublerearymemime,其中k“nα具有0×αα1的nα均未与信息理论下限,logk。最近,Hahn-Klimroth和Müller(2022)通过提供了一种非自适应算法,具有O P N 3 Q的解码复杂性,缩小了这一差距。在这项工作中,我们提出了一种串联的施工方法,该方法产生了一种非自适应算法,其解码复杂性的解码复杂性是O p n2α`n log 2 n q。通过建立QGT问题与所谓的球与垃圾箱问题之间的联系来分析解码失败的概率。我们的算法减少了信息理论和计算界的差距,以从日志k到log log k的所需查询/测试数量。这缩小了具有O P N 2 Q解码复杂性的算法类别中非自适应算法的测试数量的差异。关键字:统计推断,定量组测试,urn模型,压缩传感此外,尽管我们的算法在测试数量方面表现出log k差距,但仅在k异常大的α值中,ką1027对于α“ 0.7),仅在k异常大的情况下,它超过了现有的渐近最佳构造,从而突出了我们提议的construction。