Loading...
机构名称:
¥ 1.0

在人际交往中,情绪非常重要。词语、语音语调、面部表情和动作等属性都可用于描绘一个人的感受。然而,脑机接口 (BCI) 设备尚未达到情绪解读所需的水平。随着机器学习算法、干电极技术以及脑机接口在现实世界中对正常人的不同应用的快速发展,从脑电图数据中进行情绪分类最近引起了广泛关注。脑电图 (EEG) 信号是这些系统的关键资源。使用脑电图信号的主要好处是它们反映了真实的情绪,并且很容易被计算机系统解析。在这项工作中,使用通道选择预处理识别了与好情绪、中性和负面情绪相关的脑电图信号。然而,到目前为止,研究人员对各种情绪状态之间联系的具体了解有限。为了识别脑电图信号,我们使用了离散小波变换和机器学习技术,如循环神经网络 (RNN) 和 k-最近邻 (kNN) 算法。最初,使用分类器方法进行通道选择。结果,通过整合来自这些通道的 EEG 片段的特征来创建最终特征向量。使用 RNN 和 kNN 算法,对具有连接的积极、中性和消极情绪的最终特征向量进行独立分类。计算并比较了两种技术的分类性能。使用 RNN 和 kNN,平均总体准确率分别为 94.844 % 和 93.438 %。

基于脑电图信号的人类情绪分类使用...

基于脑电图信号的人类情绪分类使用...PDF文件第1页

基于脑电图信号的人类情绪分类使用...PDF文件第2页

基于脑电图信号的人类情绪分类使用...PDF文件第3页

基于脑电图信号的人类情绪分类使用...PDF文件第4页

基于脑电图信号的人类情绪分类使用...PDF文件第5页

相关文件推荐

2022 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2020 年
¥1.0
2023 年
¥1.0
2020 年
¥1.0
2023 年
¥5.0
2021 年
¥2.0
2020 年
¥1.0