图形匹配,也称为网络对齐,是识别两个图表之间的双向反射,从而最大程度地提高了公共边数的数量。当两个图彼此完全同构时,此问题将减少到经典的图形同构问题,其中最著名的算法在准杂音时间时间中运行[1]。通常,图形匹配是二次分配问题[7]的实例,该实例已知可以解决甚至近似[38]。是由现实世界应用(例如社交网络去匿名化[45]和计算生物学[51])以及了解平均计算复杂性的需求,最近的研究集中在统计模型下的理论基础和有效的算法。这些模型假设这两个图是在隐藏的顶点对应关系下随机生成的,其中有相关的边缘,其中规范模型是以下相关的随机图模型。对于任何整数n,用u = u n表示为1≤i=j≤n的无序对(i,j)集。
在环理论中,构建一个包含另一个环的更大环非常有用,这被称为环扩展 [1-2, 11-15]。最近,人们研究使用 Turiyam 环 [16] 处理四向数据分析,并研究其广泛的性质 [17-19] 来解决各种决策问题。然而,需要对一些猜想和方程进行基本的证明,以理解数学代数的可用性 [20]。为了实现这一目标,本文重点研究了一些丢番图方程的可逆性条件及其对 Turiyam 环的扩展。
摘要:自人类诞生以来,是什么产生了意识体验的问题就一直让思想家们着迷,但它的起源仍然是个谜。近年来,由于大型语言模型的发展,意识这一话题得到了越来越多的关注,这些模型现在可以说是通过了图灵测试,即智能的操作测试。然而,智能和意识并没有明显的联系,任何遭受过严重牙痛的人都可以证明这一点——疼痛会产生强烈的感觉并吸收我们所有的意识,但并没有发生任何特别智能的事情。在自然科学中,这个话题经常遭到质疑,因为到目前为止,还没有达成任何以独立于观察者的方式测量意识体验的内容或强度的协议。在这里,我们提出了一个新颖的提议:只要形成量子力学叠加,就会产生有意识的体验。我们的提议有几个含义:首先,它表明叠加的结构决定了体验的感质。其次,量子纠缠自然地解决了绑定问题,确保了现象体验的统一性。最后,主动性时刻可能与叠加态的形成相吻合。我们概述了一个研究计划,通过一系列量子生物学实验来实验性地测试我们的猜想。应用这些想法开辟了通过脑量子计算机接口扩展人类意识体验的可能性。
Stinespring 膨胀定理 [27] 的一个著名结果是,每个量子通道都源于对更大系统的作用。更准确地说,对于每个完全正的迹保持映射,都存在一个希尔伯特空间(表示环境)和一个等距 V——将通道的输入空间映射到与环境耦合的输出空间——这样,通过从 V ( · ) V ∗ 中追踪环境,可以恢复原始通道 [13,Thm. 6.9]。等效地,每个量子通道都可以使用所谓的 Kraus 算子 [16] 以算子和形式表示。量子通道的这两种表示在量子信息和量子计算中无处不在,并且是其基础 [28]。虽然每个这样的 V(称为 Stinespring 等距)都会通过 tr E ( V ( · ) V ∗ 诱导一个唯一的量子通道,但即使在限制环境希尔伯特空间的维数之后,每个通道仍然允许无数个 Stinespring 等距。这就是为什么 Kretschmann 等人 [19] 提出了这样一个问题:在某种意义上,“紧密相连”的任何两个信道是否都允许同样“紧密相连”的 Stinespring 等距同构。他们能够证明的是,对于任何两个量子信道 Φ 1 , Φ 2 : C n × n → C k × k,都存在具有共同膨胀空间的 Stinespring 等距同构 V 1 , V 2 ,使得
B'Abstract Aharoni和Howard,以及独立的Huang,Loh和Sudakov提出了以下彩虹版本的ERD \ XCB \ XCB \ X9DOS匹配猜想:用于正整数N,K,M,使用N \ Xe2 \ X89 \ X89 \ X89 \ XA5 km(如果每个人)f 1,f 1,f 1,f 1,f 1,如果。。,f m \ xe2 \ x8a \ x86 [n] k的大小大于最大{n k \ xe2 \ x88 \ x92 n \ x92 n \ xe2 \ x88 \ x88 \ x92 m +1 k,km \ xe2 \ xe2 \ x88 \ x88 \ x92 1 k},然后存在Emubse em subse et emsetse。。。,e m,以至于所有i \ xe2 \ x88 \ x88 [m] e i \ xe2 \ x88 \ x88 f i。我们证明存在一个绝对常数n 0,因此该彩虹版本适用于k = 3和n \ xe2 \ x89 \ xa5 n 0。我们将这个彩虹匹配的问题转换为特殊的HyperGraph H上的匹配问题。然后,我们将几种现有技术结合在均匀超图中的匹配中:\ xef \ xac \ x81nd h中的吸收匹配m;使用Alon等人的随机化过程与\ Xef \ Xac \ x81nd几乎是H \ Xe2 \ X88 \ X92 V(M)的几乎常规子图; \ xef \ xac \ x81nd在H \ xe2 \ x88 \ x92 V(m)中几乎完美匹配。要完成该过程,我们还需要证明在3-均匀的超图中的匹配项上获得新的结果,这可以看作是Luczak和Mieczkowska结果的稳定版本,并且可能具有独立的利益。
b“极值图论的一个核心问题是确定给定图 H 在 \xef\xac\x81x 大小的图中诱导副本的最大数量。这个问题最早由 Pippenger 和 Golumbic [13] 研究,近年来已成为广泛研究的主题 [2, 3, 7, 8, 11, 18]。本文重点关注有向图的类似问题。准确地说,设 H 是有向图。有向图 G 中 H 的诱导密度,表示为 i ( H, G ),是 G 中 H 的诱导副本数量除以 | V ( G ) | | V ( H ) | 。对于整数 n ,设 i ( H, n ) 为所有 n 顶点有向图 G 中 i ( H, G ) 的最大值。H 的诱导性定义为为 i ( H ) = lim n \xe2\x86\x92\xe2\x88\x9e i ( H, n )。当 i ( H, n ) 对于 n \xe2\x89\xa5 2 递减时,此极限存在。只有极少数有向图的可诱导性是已知的。一类重要的例子是有向星号。对于非负整数 k 和 \xe2\x84\x93 ,让有向星号 S k,\xe2\x84\x93 为通过对具有 k + \xe2\x84\x93 叶子的星号的边进行有向图,使得中心具有出度 k 和入度 \xe2\x84\x93 。有向星形是所有边都具有相同方向的定向星形,即星形 S k,\xe2\x84\x93 ,使得 k = 0 或 \xe2\x84\x93 = 0。S 2 , 0 和 S 3 , 0 的可诱导性由 Falgas-Ravry 和 Vaughan [5] 确定。为了解决 [5] 中的一个猜想,Huang [10] 扩展了他们的结果,确定了对所有 k \xe2\x89\xa5 2 的 S k, 0 的可诱导性,表明它是通过对入度为 0 的部分进行不平衡的弧爆破而渐近获得的。注意,由于任何有向图的可诱导性等于通过反转所有弧得到的有向图的可诱导性,因此可以考虑有向星号 S k,\xe2\x84\x93 ,使得 k \xe2\x89\xa5 \xe2\x84\x93 。特别地,Huang 的结果还确定了对所有 \xe2\x84\x93 的 S 0 ,\xe2\x84\x93 的可诱导性。 [10] 的结果未涵盖的最小定向星是 S 1 , 1 ,即三个顶点上的有向路径。Thomass\xc2\xb4e [16,猜想 6.32] 猜想 i ( S 1 , 1 ) = 2 / 5,这是通过四个顶点上的有向环的迭代爆炸获得的。