摘要。建立对灾难准备的意识对于像印度尼西亚这样的高灾害风险的国家是必不可少的。此外,对灾难的知识的需求对于准教师或小学教师至关重要。本文是一项理论研究,旨在设计一个移动教学框架,该框架讨论了技术在学习促进潜在的学院教师灾难知识方面的参与。使用的研究方法是纸质库研究评论。所分析的理论是移动教育学理论(移动援助),学习周期的5E模型和TPACK。适应移动教学框架(移动援助),学习周期和TPACK的5E模型成为设计数字灾难学习资源内容的框架,用于促进知识转换和前瞻性小学教师的教学转换。
英国邓迪大学医学院的人口健康和基因组学部门(英国邓迪大学医学院意大利帕多瓦的国家研究委员会神经科学研究所(Mari PhD);英国埃克塞特埃克塞特大学生物医学与临床科学研究所(T J McDonald PhD,A G Jones PhD); Biostat Solutions,美国医学博士Fredrick(L Li Phd,S Wang PhD);生命实验室科学,化学,生物技术与健康工程科学学院,瑞典斯德哥尔摩KTH皇家技术学院(M-G Hong PhD);研究单位分子流行病学,流行病学研究所II,德国诺伊尔伯格的Helmholtz Zentrum Muenchen(S Sharma PhD);英国牛津大学牛津大学人类遗传学信托基金中心(N R Robertson PhD,Mahajan PhD);生命实验室科学,瑞典乌普萨拉大学医学细胞生物学系,瑞典(X Wang PhD);纽卡斯尔大学纽卡斯尔大学蜂窝医学研究所,英国泰恩省(M Walker Phd教授);丹麦索伯格Novo Nordisk的全球首席医疗办公室(S HER)(高级教授);英国邓迪大学医学院的人口健康和基因组学部门(英国邓迪大学医学院意大利帕多瓦的国家研究委员会神经科学研究所(Mari PhD);英国埃克塞特埃克塞特大学生物医学与临床科学研究所(T J McDonald PhD,A G Jones PhD); Biostat Solutions,美国医学博士Fredrick(L Li Phd,S Wang PhD);生命实验室科学,化学,生物技术与健康工程科学学院,瑞典斯德哥尔摩KTH皇家技术学院(M-G Hong PhD);研究单位分子流行病学,流行病学研究所II,德国诺伊尔伯格的Helmholtz Zentrum Muenchen(S Sharma PhD);英国牛津大学牛津大学人类遗传学信托基金中心(N R Robertson PhD,Mahajan PhD);生命实验室科学,瑞典乌普萨拉大学医学细胞生物学系,瑞典(X Wang PhD);纽卡斯尔大学纽卡斯尔大学蜂窝医学研究所,英国泰恩省(M Walker Phd教授);丹麦索伯格Novo Nordisk的全球首席医疗办公室(S HER)(高级教授);
s = 7。8和13 TEV。LHCB [8]宣布发现了另外三个Tetraquark候选人X(4274),X(4500)和X(4700)。不同的作者已经提出了许多模型和方法来研究四方国家。jaffe [9]研究了Quark Bag模型框架中多Quark Hadrons Q 2 2 Q 2的光谱和主要的衰减耦合。在发现J/ Meson后,Iwasaki [10]提出了Tetraquark State T 4 C。Debastiani等。[11]在diquark-antidiquark方法和介子分子中研究了四夸克质量。Chen等。 [12]已经研究了不同J PC状态的diquark-Antidiquark配置中的双重隐藏魅力和底部质量,并且观察到质量高于观察到的自发解离阈值 - 在执行QCD总和时,两个慈善中的自发性解离阈值。 Wang等。 [13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。 在组成夸克模型和QCD总规则的背景下,许多作者[14-18]对双重的tetraquark群众进行了研究。 Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Chen等。[12]已经研究了不同J PC状态的diquark-Antidiquark配置中的双重隐藏魅力和底部质量,并且观察到质量高于观察到的自发解离阈值 - 在执行QCD总和时,两个慈善中的自发性解离阈值。Wang等。 [13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。 在组成夸克模型和QCD总规则的背景下,许多作者[14-18]对双重的tetraquark群众进行了研究。 Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Wang等。[13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。双重的tetraquark群众进行了研究。Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Chakrabarti等。[19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。
本期刊文章的自存档后印本版本可在林雪平大学机构知识库 (DiVA) 上找到:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-184470 注意:引用本作品时,请引用原始出版物。这是发表于以下文章的电子版:Gustavsson, M., Ytterberg, C., Nabsen Marwaa, M., Tham, K., Guidetti, S., (2018), Experiences of using information and communication technology within the first year after stroke – a grounded theory study, Disability and Rehabilitation, 40(5), 561-568. https://doi.org/10.1080/09638288.2016.1264012
图 1:单层结构,(ab) 碘化铅-PbI 2 ,(cd) 氧化铅 PbO ,(ef) 氧化锡 SnO ,(gh) 硫化铟-InS ,(ij) 硒化铟-InSe ,分别为顶视图和透视侧视图。(k) PbO 和 SnO ,(l) PbI 2 ,InS 和 InSe 的第一布里渊区路径。原子颜色代码:黑色=Pb,紫色=I,红色=O,浅蓝/灰色=Sn,浅粉色=In,黄色=S,绿色=Se
1 南卡罗来纳医科大学医学院神经病学系,南卡罗来纳州查尔斯顿 29425,2 宾夕法尼亚大学生物工程系,宾夕法尼亚州费城 19104,3 南卡罗来纳医科大学基础科学学院神经科学系,南卡罗来纳州查尔斯顿 29425,4 南卡罗来纳大学通信科学与障碍系,南卡罗来纳州哥伦比亚 29208,5 南卡罗来纳大学心理学系,南卡罗来纳州哥伦比亚 29208,6 宾夕法尼亚大学电气与系统工程系,宾夕法尼亚州费城 19104,7 宾夕法尼亚大学佩雷尔曼医学院神经病学系,宾夕法尼亚州费城 19014,8 宾夕法尼亚大学艺术与科学学院物理与天文系,宾夕法尼亚州费城 19014,9 宾夕法尼亚大学佩雷尔曼医学院精神病学系,宾夕法尼亚州费城 19014,10 圣达菲研究所,新墨西哥州圣达菲,NM 87501
因此,对于应用而言,非常需要一种带隙与 β -Ga 2 O 3 一样宽但对称性更高的材料。最近,Galazka 等人报道了块体熔融生长的高结构质量 ZnGa 2 O 4 (ZGO) 单晶,可由其制备不同取向的绝缘和半导体晶片。[11,12] ZGO 结晶为立方尖晶石结构(Fd3m 空间群),如图 1 中的球棒模型所示。尖晶石是指一类化学式为 AB 2 X 4 的化合物,其中 A 是二价阳离子,如 Zn,B 是三价阳离子,如 Ga,X 是二价阴离子,如 O。在 ZGO 的正常尖晶石结构中,Zn 占据四面体位置,而 Ga 占据八面体位置。在高温熔体生长过程中,八面体和四面体位置的占据是随机的。[11] 长时间冷却可稳定正常尖晶石结构,而较短的冷却时间会引入反位缺陷。反位缺陷导致 n 型导电性,自由电子浓度在 10 18 – 10 19 cm 3 的数量级上。在氧化气氛中以 800 – 1400 C 的温度进行 10 小时的生长后退火或在 700 C 的温度进行 40 小时的生长后退火后,ZGO 晶体可转变为绝缘状态。[11 – 13] 由于其立方尖晶石结构,ZGO 具有各向同性的热性能和光学性能。发现 ZGO 的光学带隙为 4.6 eV,接近 β -Ga 2 O 3 的光学带隙,并且没有观察到优选的解理面。[11,12]
假肢升级是专门的假肢,使患者能够参加更苛刻的娱乐活动,例如跑步。本研究检查了假肢的使用,特别是运动假肢。目前的研究着重于样品的制造和生产特性,由基于多种纤维(UHMWPE,Perlon,Perlon,Carbon纤维和玻璃纤维)增强的聚甲基丙烯酸酯树脂(PMMA)制成的运动假体脚。有限元方法(ANSYS-19R)用于构建运动假体模型,并应用边界条件来研究变形和存储能量对运动假肢性能的影响。已经制造了六个层压板,并且发现在UHMWPE中添加多个碳纤维层对变形的影响比添加玻璃纤维改善的影响更好。此外,研究结果表明,当类的数量增加一倍时,性能会有所改善,因为在同一边界条件下,添加碳纤维的层压板之间的改善速率为31%。
弥漫性相关光谱(DC)是一种光学成像方法,可无创,连续地测量血流。它通过测量从组织中恢复的扩散光的斑点强度波动的时间自相关功能来量化血流指数。1 - 4组织动力学的变化导致时间自相关函数的衰减时间的变化。因此,DC可用于检测由神经活动引起的组织动力学。衰减时间的变化通常仅归因于脑血流的变化(CBF)。5,6 CBF的峰通常在神经元激活的开始时通常在几秒钟的时间延迟时发生,这是缓慢且不可行的,对于在诸如大脑 - 计算机接口等应用中的大脑激活中实时概念。