抽象聚丙烯是世界上顶级商品聚合物之一,也广泛用于纺织业。然而,它的非极性性质和部分结晶的结构显着使植物型的工业着色过程变得复杂。当前,由聚丙烯制成或具有很大比例的聚丙烯制成的纺织品在非常严峻的条件下染色,包括使用高压和温度,这使得该过程的能量密集型。本研究提出了三步的着色剂的合成,能够粘附在没有严重消耗能量条件的情况下的合成聚丙烯纱线上。这可以通过使用三甲氧基 - 尼硅烷封装有机色素,通过用三甲基甲基甲基丙烯酸甲酯修饰二氧化硅壳来引入表面双键,并最终使用硫醇烯 - 硫代烯烯 - 硫代烯烯型化学方法。我们通过在逐步合成这些新染色剂的逐步指南后,在周围条件下在一个简单的过程中在一个简单的过程中染色的聚丙烯纱来证明这种方法的适用性。最后,可视化纱线的成功染色,并讨论了其实用性。
摘要:具有明显的室温磁电耦合系数的薄膜实验实现,在没有外部DC磁场的情况下,αMe一直难以捉摸。在这里,在没有外部DC磁场的情况下,据报道多效性聚合物纳米复合材料(MPC)薄膜的大型耦合系数为750±30 mV-1 cm-1。MPC基于PMMA-REDRED的钴有铁纳米颗粒,该纳米粒子均匀分散在压电聚合物聚合物聚(乙烯基氟化物-Co-三氟乙烯,P(VDF-TRFE)。 表明,纳米颗粒聚集起着有害的作用,并显着降低了αMe。 通过原子传递自由基聚合(ATRP)接管一层聚(甲基丙烯酸甲酯)(PMMA)的表面功能化,从而使纳米粒子用P(VDF-Trfe)基质混乱,从而使其在矩阵中均匀地分配在Matrix中,甚至可以在subsicmerter metrix中均匀地分配。 均匀的色散产生了铁磁纳米颗粒与压电聚合物矩阵之间最大化的界面相互作用,从而导致在溶液处理的薄膜中对大αME值进行实验证明,这些薄膜可以在柔性和可打印的多型多型电子设备中利用,以用于敏感和可启用敏感性。 关键字:多效,铁电聚合物,磁性纳米颗粒,纳米复合材料,磁电耦合表明,纳米颗粒聚集起着有害的作用,并显着降低了αMe。通过原子传递自由基聚合(ATRP)接管一层聚(甲基丙烯酸甲酯)(PMMA)的表面功能化,从而使纳米粒子用P(VDF-Trfe)基质混乱,从而使其在矩阵中均匀地分配在Matrix中,甚至可以在subsicmerter metrix中均匀地分配。 均匀的色散产生了铁磁纳米颗粒与压电聚合物矩阵之间最大化的界面相互作用,从而导致在溶液处理的薄膜中对大αME值进行实验证明,这些薄膜可以在柔性和可打印的多型多型电子设备中利用,以用于敏感和可启用敏感性。 关键字:多效,铁电聚合物,磁性纳米颗粒,纳米复合材料,磁电耦合表面功能化,从而使纳米粒子用P(VDF-Trfe)基质混乱,从而使其在矩阵中均匀地分配在Matrix中,甚至可以在subsicmerter metrix中均匀地分配。均匀的色散产生了铁磁纳米颗粒与压电聚合物矩阵之间最大化的界面相互作用,从而导致在溶液处理的薄膜中对大αME值进行实验证明,这些薄膜可以在柔性和可打印的多型多型电子设备中利用,以用于敏感和可启用敏感性。关键字:多效,铁电聚合物,磁性纳米颗粒,纳米复合材料,磁电耦合
摘要:Cu 0介导的原子转移自由基聚合(ATRP)在水性培养基中被扩展到二级胺 - 抑制甲基丙烯酸酯聚合物,并用聚([2-二甲基氨基]乙基甲基甲基甲基甲基甲基)(PDMAEMA)(PDMAEMA)(PDMAEMA)作为模型聚合物。通过增加停用Cu II物种的浓度,降低反应温度并将辅助卤化物浓度增加到1 m,在4小时内实现了均固定分子量分布(MWD)的聚合物。 MWDS与理论值表现出良好的一致性,多分散指数(a)低至1.14。此外,该反应系统显示出对溶解氧的显着耐受性,几乎没有观察到的聚合物在启动前而没有脱气而没有观察到的有害影响。在3.5的温和酸性pH下的合成表现出了活性端基的出色保留,如近量化转化时的链扩展所证明的,并将系统扩展到2-(二乙基氨基)甲基丙烯酸乙酯(Deaema)(Deaema)(Deaema)(Deaema)和2-(二异丙基)乙基乙酸乙酯(Diasopyly)(Dpaema)。这项工作提出了一种新的水性方法,用于用具有良好的MWD的第三级胺 - 吊剂聚合物快速合成。
聚合物基质中纳入的铅卤化物钙钛矿纳米晶体(LHP-NC)已成为各种光子应用的有前途的材料。然而,由于单体转化率低,LHP-NCS负载限制以及在连接后保持NCS完整性方面,挑战持续到实现高质量的纳米复合材料,并限制了NCS完整性。通过NC引发的光诱导的电子传递 - 可逆的加法链转移(PET-RAFT)方法合成单个步骤中合成LHP-NCS/聚(甲基丙烯酸甲酯)纳米复合材料的新颖方案。poly-Merization启动由NCS表面介导的蓝光下介导的均可制造具有NCS载荷的同质纳米复合材料,即使在氧气的情况下,NCS载荷也可达高达7%w/w和≈90%的单体转换。此过程保留了NCS的光学质量并钝化了NCS表面缺陷,从而导致纳米复合材料表现出接近统一发光效果。通过放射性发光测量值表明,这种方法对产生高负载的纳米复合材料进行辐射检测的潜力验证了6000 pH MeV-1的光屈服值和效率寿命为490 PS的快速闪烁动态,显示了时间射频射频的前景。
摘要。在这项研究中,采用了一种便捷的策略,用于从聚苯乙烯(PST),聚氨酯(PU),聚(PMMA甲基丙烯酸甲酯)(PMMA)及其有机模型ED Zn Al LDH(分层双羟基)的有机模型(PMMA)合成衍生物(PMMA)(PMMA)(PMMA)。为此,首先,通过Zn-Al-ldH的阴离子交换反应对十二烷基磺酸钠(SDS)修饰LDH纳米颗粒。其次,从由9-十核1- ol组成的溶剂中获得PU宏引诱剂,并用于将苯乙烯单体与ORD PU-puco-pST共聚物共聚的控制移植共聚。然后,合成的puco-st被N-溴糖二酰亚胺(NBS)溴化以获得与溴基团的共聚物。在以下情况下,在存在溴化puco -st和cubr/bpy(2,2 0 -bipyridine催化剂的情况下,都可以制备(PMMA -G -PST- G -PU)Terpolymer。最后,(PMMA -G -PST -G -PU)/ZNAL LDH纳米复合材料通过溶液互化方法成功合成。fe-Sem图像显示,Zn-Al(SDS)和Zn-Al-LDH的表面形态导致片状和六边形形态。使用DSC和TGA对热性质进行研究表明(PMMA-G -PST-G -PU)/Zn-Al-LDH纳米复合材料与整洁的PU相比具有更高的热稳定性。合成的Terpolymer和(PMMA-G -PST-G -PU)/Zn-Al-LDH纳米复合材料由于其高LDH特性而被用作聚合物纳米复合材料的增强剂。©2024 Sharif技术大学。保留所有权利。
Thermochimica Acta , 521, 26-36, 2011 ( IF = 1.899, RS = 1.7374, PI-C ). 4. “使用不同的分类方法预测液晶性质” Florin Leon、Catalin Lisa、Silvia Curteanu 分子晶体和液晶, DOI: 10.1080/15421400903574391, 第 518 卷, 第 129–148 页, 2010 年 ( IF = 0.537, RS = 0.36702 )。 5.“神经网络用于预测结构-热稳定性关系”Catalin Lisa、Lisa Gabriela、Silvia Curteanu Revue Roumaine de Chimie,54(11-12),1133-1142,2009 (IF = 0.263, RS = 0.12983, PI- 1)。6.“根据二元混合物的实验折射率预测过量热力学性质2.人工神经网络建模”Lisa Gabriela、Silvia Curteanu、Catalin Lisa、Revue Roumaine de Chimie,53(9),859-867,2008 (IF = 0.263, RS = 0.12983)。 7.“机器学习方法用于预测某些共聚醚的液晶行为” Florin Leon、Silvia Curteanu、C ă t ă lin Lisa、Nicolae Hurduc 分子晶体和液晶,第 469 卷,第 1-22 页,2007 年(IF = 0.537,RS = 0.36702)。 8.“基于神经网络预测有机化合物的液晶特性” C ă t ă lin Lisa、Silvia Curteanu 计算机辅助化学工程,24,第 39-45 页,第 17 届欧洲计算机辅助过程工程研讨会卷,ESCAPE 17,5 月 27-30 日,布加勒斯特,2007 年。 9.“甲基丙烯酸甲酯自由基聚合中粘度变化的建模”Silvia Curteanu,C ă t ă lin Lisa Revue Roumaine de Chimie,48(8),pag. 651-659,2003(IF = 0.263,RS = 0.12983)。
为了利用环境中存在的微生物以获得其有益资源,有效的选择和从环境样品中隔离了微生物是必不可少的。在这项研究中,我们使用树脂制造了一个用于微生物培养的凝胶填充的微孔阵列装置。该设备具有集成的密封机制,可以基于微生物的培养物进行高密度隔离。该设备易于管理,使用明亮场显微镜促进观察。这款由甲基丙烯酸甲酯(PMMA)/聚乙二醇三苯二甲酸酯(PET)制成的低成本装置具有900个微孔(600μm×600μm×600μm×700μm),填充在玻璃滑板板中的微生物培养基培养基。它还具有用于维持微凝胶中水分含量的凹槽。井之间的分区壁具有高度疏水的涂层,可抑制微生物迁移到相邻井中并防止液体物质交换。密封后,该设备可以在琼脂糖凝胶中保持水分7天。在使用该设备的细菌培养实验中,将环境细菌分离出来,并在3天后在单个井中培养。此外,然后从井中捡起孤立的细菌并重新培养。该设备可有效地首次筛选海洋环境样品中的微生物。
从历史上看,草药在治疗各种疾病方面发挥了重要作用。特别是在糖尿病方面,许多植物疗法已被用于调节血糖水平和改善胰岛素敏感性。然而,尽管它们很受欢迎,但许多草药的溶解性较差,导致生物利用度低,需要更高剂量或重复给药,这可能会限制它们的治疗可行性。匙羹藤是一种著名的草药,在糖尿病管理中有着悠久的历史,它含有匙羹藤酸,由于溶解度有限而面临生物利用度挑战,影响其临床疗效。本研究重点是使用刺激响应性纳米凝胶和 β-环糊精,通过自由基聚合与甲基丙烯酸 (MAA) 交联,来提高匙羹藤的溶解度和生物利用度。优化的配方 NGT4 表现出良好的特性:高药物包封率、增加的溶解度和 201nm 的粒径。 FTIR、TGA/DSC、SEM 和 PXRD 等分析方法证实了成功的聚合物网络和稳定的纳米凝胶特性。在酸性和碱性介质中进行的体外释放研究表明药物释放可控,而体内试验证实了纳米凝胶的安全性、生物相容性和有效的降血糖作用。这些发现表明,pH 响应性纳米凝胶是一种有希望的方法,可以提高匙羹藤在糖尿病管理中的溶解度和治疗效果。
从使用 248-193 nm (4.8-6.4 eV) 的深紫外 (DUV) 光刻技术转变为使用 13.5 nm (92 eV) 的极紫外 (EUV) 光刻技术,这意味着光与光刻胶薄膜相互作用的方式发生了根本性的变化。虽然 DUV 光通过共振激发选择性地激活光刻胶材料中的化学键,但 EUV 的高光子能量本质上会触发电离事件,但该过程仅具有较低的局部选择性。此外,初级光电离事件会导致光刻胶薄膜中发生复杂的辐射化学反应。为了设计适用于 20 nm 以下特征尺寸成像的强效 EUV 光刻胶材料,了解并最终控制用 EUV 辐射成像的光刻胶膜中的物理和化学过程至关重要。本文使用气相光电子光离子巧合 (PEPICO) 光谱研究了甲基丙烯酸叔丁酯 (TBMA) 的解离光电离,TBMA 是一种广泛用于化学放大光刻胶 (CAR) 聚合物的单体单元。通过只关注 EUV 光子与光刻胶相互作用的初始步骤,可以降低化学的复杂性,并获得如果没有这种孤立视角就无法获得的深刻基本见解。这些见解与进一步的补充实验相结合,是解密 EUV 光刻中的完整化学和物理过程的基本组成部分。
摘要:准确的剂量学验证在放射疗法中变得越来越重要。al-尽管聚合物凝胶剂量测定法可能有助于验证复杂的3D剂量分布,但由于其对氧气和其他污染物的反应性强,因此对临床应用有局限性。因此,重要的是,凝胶储存容器的材料将与外部污染物的反应阻止反应。在这项研究中,我们测试了可以用作凝胶容器的各种基于聚合物的3D打印材料的化学渗透性。使用甲基丙烯酸,明胶和四甲基(羟甲基)氯化磷。比较了可应用于融合沉积建模(FDM)-Type 3D打印机的五种类型的印刷材料:丙烯酸酯丁烷丁二烯苯乙烯(ABS),cPE-POLYETER(CPE),聚碳酸酯(PC)(PC),多聚乳酸(PLA)和聚丙烯(PPPPPPPPPP)(PP)(PLA)(PLA)(pp)(plage vial)。分析了从磁共振成像扫描获得的每种材料的R2(1/T2)松弛率的地图。此外,评估了R2图的响应直方图和剂量校准曲线。R2分布表明,CPE比其他材料具有更高的边界,并且CPE的轮廓梯度也最接近参考小瓶。直方图和剂量校准表明,与参考小瓶相比,CPE提供了83.5%的最均匀和最高相对响应,均方根误差为8.6%。这些结果表明CPE是FDM型3D打印凝胶容器的合理材料。