抽象DNA甲基化是一种典型的表观遗传机制。被广泛认为是基因沉默的稳定调节剂,它代表了一种“分子盲文”的形式,它在DNA上进行了化学印刷,以调节其结构及其遗传信息的表达。然而,曾经有一段时间,甲基仅存在于细胞中,我的单独斑点在DNA的胞嘧啶构建块上斑点。为什么生命守则化学修改,显然是“没有酶作用的事故”(Wyatt 1951)?如果人体中的所有细胞共享相同的基因组序列,它们如何采用独特的功能并保持稳定的发育状态?细胞还记得吗?从这个历史的角度来看,我回顾了表观遗传史和原理以及工具,关键科学家和概念,这些概念使我们综合和发现原核生物和真核甲基化的DNA。大量借鉴了杰拉德·怀亚特(Gerard Wyatt)对跨物种甲基化DNA的不对称水平以及一对有远见的1975 DNA甲基化论文的观察,5-甲基胞嘧啶与细菌中的DNA甲基化酶有关,通过稳定的细胞的发育和构成蛋白质的构造,稳定的细胞状态的维持稳定的细胞状态与稳定的细胞状态结合。这些作品不仅塑造了我们对遗传力和基因调节的看法,而且还提醒我们,核心表观遗传概念源于对表观遗传机制的内在要求出现。在原核生物和真核世界的观察过程中,表观遗传系统的功能可访问和解释各种生命形式的遗传信息。共同为我们的当今表观遗传学理解提供了许多指导原则,并为后基因组学界的下一代表观遗传探究提供了许多指导原则。
成熟和新兴的基因编辑器 CRISPR–Cas 系统是一种广泛存在的原核生物防御系统,用于防御入侵的噬菌体和外来遗传物质。在自然界中,它们由 (1) 效应模块(在第 1 类 CRISPR 系统中是蛋白质复合物,在第 2 类 CRISPR 系统中是单个效应子)和 (2) 适应模块(将外来序列整合到 CRISPR 阵列中,crRNA 从中表达)组成。由于这些系统是 RNA 引导的,因此可以通过改变 crRNA 的序列重新定位它们,这为可编程基因组编辑工具提供了一个起点,有关此类工具的开发已在其他地方进行了综述 5 – 13 。第一个被设计用于人类细胞的系统是 2 类 CRISPR–Cas9 系统 14、15,其中化脓性链球菌 CRISPR–Cas9 系统 (SpCas9;也简称为 Cas9) 是目前使用最广泛的系统。Cas9 在与向导 RNA(对于 Cas9 来说称为单向导 RNA (sgRNA))互补的靶位点处产生双链断裂 (DSB);在人类细胞中,这些 DSB 可以通过非同源末端连接 (NHEJ) 修复,这一过程通常会导致基因功能丧失。早期临床数据 16 表明,NHEJ 介导的基因敲除会降低致病蛋白的表达(见相关链接)。靶向的 DSB 也可以通过宿主细胞的内源性同源修复机制进行修复,从而整合由 Cas9 和 gRNA 随附的外源提供的模板 DNA。 Cas9 已被改造以实现其他基因组结果。通过突变 SpCas9 的催化残基(参考文献 17),Cas9 可以转化为可编程的 DNA 结合蛋白,通常称为死 Cas9 (dCas9)。尽管单独使用 dCas9 可以通过阻止 RNA 聚合酶的通过来减少靶基因转录,但 dCas9 与转录抑制因子(例如 Krüppel 相关框结构域 18)或表观基因组修饰因子(例如 DNA 甲基化酶 DNMT3A 19、20)的融合已促成 CRISPR 干扰系统的产生。类似地,dCas9 可通过融合转录激活因子(如 VP64(参考文献 21))或表观基因组修饰因子(如人类乙酰转移酶 p300(参考文献 22)或 TET1 脱甲基酶 19、23)用于靶向转录激活。
CRISPR/Cas 系统,特别是 CRISPR/Cas9(Jinek 等人,2012;Cong 等人,2013),已被开发为一个强大而多功能的平台,用于操作各种物种的基因组。近年来,许多报告表明其在人类基因治疗和生命科学研究以及动植物育种方面具有强大的潜在应用。本研究主题“精准基因组编辑技术和应用”中的集合可能就是明证。通常,CRISPR/Cas9 核酸酶用于切割目标基因组 DNA 以产生位点特异性双链断裂 (DSB),主要通过非同源末端连接 (NHEJ) 修复,或在较小程度上通过同源定向修复 (HDR) 修复。经典的 NHEJ 修复途径可产生小的插入或缺失 (indel),通过在开放阅读框 (ORF) 中引入移码导致目标编码基因的功能丧失。NHEJ 诱变是一种非常流行的基因操作策略。除了经典的 NHEJ 之外,替代或准确的 NHEJ 介导的修复可以实现精确的基因组 DNA 缺失(Guo et al., 2018; Shou et al., 2018)。Chao 等人和 Zhao 等人在本研究主题中的两篇论文分别描述了等位基因特异性敲除和双基因敲除小鼠模型的制造,用于快速疾病基因验证和人类异种移植研究。N6-甲基腺苷 (m6A) 是一种成熟的真核 mRNA 表观遗传修饰。越来越多的研究发现了 m6A 甲基化的意义,这催生了“表观转录组学”这一新兴领域。本卷中的另一篇文章( Huang 等人)描述了小鼠精原细胞 GC-1 细胞中脂肪质量和肥胖相关( Fto )基因的敲除研究,该基因已被证明作为 m6A 去甲基化酶作用于表观转录组( Li 等人,2017 年; Lin 等人,2017 年)。另一方面,HDR 修复途径依赖于同源供体 DNA 在 DSB 位点产生靶向基因敲入或在两个 DSB 位点之间产生基因替换。精确的点突变和设计的小插入/缺失也可以通过这种方法实现。本专题中的一篇论文介绍了利用CRISPR/Cas9介导的HDR在人诱导性多能干细胞(iPSC)中精准校正Rett综合征(RTT)中甲基-CpG结合蛋白2(MECP2)基因的努力。该报道为基于iPSC的疾病建模和基因校正治疗提供了参考(Le等)。虽然基于HDR的基因组可以实现基因插入和精准替换,但在精准编辑过程中仍面临一些缺点,包括HDR效率低、双等位基因靶向失败、正向选择的复杂性以及选择标记的重新删除。