纳米级的材料显示出令人兴奋和不同的特性。在这篇综述中,对纳米材料的应用在修改微生物燃料电池(MFC)系统(即电极和膜)的主要组成部分及其对细胞性能的影响进行了审查并进行了严格讨论。碳和金属的纳米颗粒以及导电聚合物可能有助于厚的阳极和阴极微生物生物膜的生长,从而导致电极和生物膜之间的电子转移增强。扩展活性表面积,电导率增加和生物相容性是MFC修饰中使用的有希望的纳米材料的重要属性。在本文中还综述了纳米材料在制造阴极催化剂(催化氧还原反应)中的应用。在阴极侧使用的各种纳米催化剂中,金属纳米催化剂(例如金属氧化物和金属有机框架(MOF))被认为是常规使用的高尺寸PT的廉价且高性能的替代品。此外,与常规使用且昂贵的Nafion相比,用亲水性和抗菌纳米颗粒修饰的聚合物膜可能导致更高的质子电导率和缓解生物污染物。这些改进可能会导致发电,废水处理和纳米接种的细胞性能更具有希望的细胞性能。未来的研究工作也应考虑到纳米材料的生产成本以及这些化合物的环境安全方面的降低。
基于非富勒烯受体的有机太阳能电池(NFA-OSC)现在正朝着 20% 的能量转换效率的里程碑迈进。为实现这一目标,最小化所有损耗通道(包括非辐射光电压损耗)似乎是必要的。在很大程度上,非辐射复合被认为是材料固有的特性,这是由于振动引起的电荷转移 (CT) 状态的衰减或它们向三重态激子的反向电子转移。本文表明,使用一种具有 2,2,6,6-四甲基哌啶-1-氧基侧基的新型共轭硝基自由基聚合物 (GDTA) 作为添加剂可以提高基于不同活性层材料的 NFA-OSC 的光伏性能。添加 GDTA 后,开路电压 (V OC )、填充因子 (FF) 和短路电流密度 (J SC ) 同时改善。该方法应用于多种材料系统,包括最先进的供体/受体对,其性能从 15.8% 提高到 17.6%(对于 PM6:Y6)并从 17.5% 提高到 18.3%(对于 PM6:BTP-eC9)。然后,讨论了观察到的改进背后的可能原因。结果表明 CT 状态被抑制为三重态激子损失通道。这项工作提出了一种简便、有前途且通用的方法来进一步提高 NFA-OSC 的性能。
电荷掺杂代表调节材料特性的最成功的方法之一。常规化学掺杂不可避免地涉及淬灭疾病的侧面影响,有时会受到掺杂元素的选择限制。相反,静电掺杂使以干净的方式将载体注入材料;但是,在具有高背景载体浓度的材料中,由于筛选长度极短,静电掺杂的工作距离受到限制。在这项工作中,基于频段对齐的考虑,我们通过将srrruo 3的单单核电储存层插入srRuo 3 / ndnio 3的人工晶格,以各种周期性的定期级别的ndnio 3 matrix插入ndnio 3 matrix。通过X射线吸收光谱揭示了从SRRUO 3到NDNIO 3的电子转移,并随附轨道重建。这种电子掺杂大大调节了ndnio 3的金属 - 磁性和抗铁磁过渡。此外,在超级晶格中观察到散装的E'抗反磁性顺序,NDNIO 3层降低到单个单位细胞,该单元与界面离子交换相关,这与超级限制的强电子传递增强了。我们的工作提高了使用有效的调节掺杂定制人工氧化物材料的前景,这可能导致自然晶体无法实现的新兴功能。
核碱基。6尽管从那时起,众多CT状态的示例已在不同的修饰和DNA的天然形式中得到了证实,但控制此过程效率的关键因素仍然是晦涩的。因此,对能够执行效果紫外线诱导的电荷转移的DNA序列的预测仍然是一个挑战。在不同的过程中,可以通过DNA中的电荷分离触发的不同过程,环丁烷嘧啶二聚体(CPD)的自我修复最近引起了很大的关注。15,16 CPD是DNA暴露于紫外线的最常形成的光子,其最具特征性的结构元素是在两个相邻的嘧啶碱基之间形成的环丁烷环。17 - 21形成该环丁烷环的形成影响糖 - 磷酸骨架的结构,并排除了生化活性,例如DNA复制和转换。21,22在生物学中,CPD修复酶,例如光酶,通过从avin腺嘌呤co因子注入电子,修复病变,从而吸收可见光。23 - 27类似地,表明特定的c dNA序列或替代核碱基通过光诱导的电子转移触发非酶DNA自修复。16,28 - 30最突出的DNA自我修复例子被证明了代表CPD的损坏的GAT] T序列(“]”),以及位于CPDS的附属物中的2,6-二氨基嘌呤(D)和8-氧气胰蛋白酶(d)和8-氧气(O)核苷酸酶。尤其是31,32,描述了GAT] T序列是在其光激发时从鸟嘌呤转移的顺序电子转移。3133 - 35换句话说,非酶DNA自我修复的产率是表现出有效的光诱导电荷分离如何在特定的C DNA序列中发生的,以及CT状态的寿命是否很长以使光化学反应很长。值得强调的是,CPD的高度有效的自我修复大大提高了特定序列的光稳定性,并被认为是从丰富的随机序列库中的原始RNA和DNA寡聚物的可能选择因子。1,15,36,37更重要的是,已经提出了紫外线作为核苷酸选择性益生元合成的关键能源之一。38 - 46这导致上述D和O核碱基作为与规范核酶相比,由于其改善的电子含量和CPD更换特性,因此将上述D和O核酶视为第一个信息聚合物的潜在组成部分。尤其是31,32,47,含有D核苷酸酶和T] T二聚体的DNA三核苷酸显示可修复CPD,当在280 nm处受照射时,产量达到92%,因此,D可以保护DNA在预防性的情况下将DNA低聚物保护在光电座上。
最近,人们研究了从二维介质和单电子转移形成单光子源的可能性 [1–4]。其想法是通过 pn 结以受控方式注入电子,从而根据需要确定性地产生单光子脉冲。横向 pn 结可由毗邻二维空穴气区域的二维电子气区域形成。电子在穿过 pn 结后与 p 型区域的空穴复合时发生单光子发射 [4]。人们在 III-V 半导体异质结构(特别是 GaAs/AlGaAs 系统)中对不同类型的横向 pn 结器件进行了多项研究。在聚焦离子分子束外延法中,两个相邻区域选择性地掺杂 Si 和 Be,以创建 n 型区域和 p 型区域 [5]。在面再生长法中,p 型和 n 型区域都是通过掺杂在 GaAs 表面不同面上的 Si 来创建的 [6, 7]。Cecchini 等人通过蚀刻掉部分 Be 掺杂的 AlGaAs 并形成 n 型 Au-GeNi 接触,从 p 型衬底形成了横向 pn 结。[8–10]。Dai 等人使用两个感应栅极来形成二维电子和空穴气体 [11, 12]。Helgers 等人使用 GaAs 衬底上的量子线作为通道,利用表面声波传输光激发电子和空穴 [13]。在其他类型的材料系统中也可以形成横向 pn 结,
摘要:对晶体材料的化学空间,尤其是金属 - 有机框架(MOF)的实验探索,需要对大量反应的多组分控制,这是不可避免地会在手动执行时耗时和劳动力。为了在保持高可重复性的同时加速物料发现速率,我们开发了一种与机器人合成平台集成的机器学习算法,用于闭环探索多氧盐损坏金属金属 - 有机框架(POMOFS)的化学空间。通过使用从不确定性反馈实验获得的更新数据和基于其化学构成的POMOF分类的多类分类扩展,通过使用更新数据来优化极端梯度提升(XGBoost)模型。POMOF的机器人合成的数字签名由通用化学描述语言(χDL)表示,以精确记录合成步骤并增强可重复性。九种新颖的Pomofs,其中包括具有良好的可重复性的POM胺衍生物与各种醛的硫胺衍生物的胰岛化反应,这些pomofs具有源自单个配体的混合配体。此外,根据XGBoost模型绘制了化学空间图,其F1得分高于0.8。此外,合成的Pomofs的电化学性质表明,与分子POMS相比,较高的电子转移和Zn比率的直接效应,所使用的配体的类型以及POMOFS中的拓扑结构用于调节电子传递能力。■简介
强关联过渡金属氧化物因其各种奇异现象而广为人知。稀土镍酸盐(如 LaNiO 3)就是一个典型例子,它们的电子、自旋和晶格自由度之间具有紧密的互连。将它们配对成混合异质结构可以进一步增强其特性,从而产生隐藏相和突发现象。一个重要的例子是 LaNiO 3 /LaTiO 3 超晶格,其中已经观察到从 LaTiO 3 到 LaNiO 3 的层间电子转移,从而导致高自旋状态。然而,迄今为止尚未观察到与这种高自旋状态相关的宏观磁序出现。本文利用 μ 子自旋旋转、X 射线吸收和共振非弹性 X 射线散射,直接证明了在 LaNiO 3 /LaTiO 3 界面上出现了具有高磁振子能量和交换相互作用的反铁磁序。由于磁性是纯界面性的,单个 LaNiO 3 /LaTiO 3 界面本质上可以表现为原子级薄的强关联准二维反铁磁体,有可能在先进的自旋电子器件中实现技术应用。此外,其强准二维磁关联、轨道极化平面配体空穴和分层超晶格设计使其电子、磁性和晶格结构类似于超导铜酸盐和镍酸盐的前体态,但具有 S → 1 自旋态。
摘要:本文提出了一种不同的策略,用于从生物质中得出碳材料,放弃传统的强腐蚀激活剂,并使用靶向的轻度绿色酶靶向降低果胶基质的果皮基质,以降低Pomelo Peel Peel棉花羊毛内部层的果胶基质,从而诱导其表面上的大量Nananopores。同时,通过酶促处理产生的其他亲水组可用于有效地固定金属铁原子并制备具有均匀分散的Fe -n X结构的多孔碳,在这种情况下,通过最多可通过到1435 m 2 g -1。ppe -fenpc -900用作6 M KOH电解液中的电极材料;它表现出400 f g -1的不错的特定电容。组装的对称超级电容器在300 W kg -1功率密度和出色的循环稳定性下表现出12.8 wh kg -1的高能量密度。作为催化剂,它还表现出0.850 V(VS.RHE)的半波电势,而扩散限制的电流为5.79 mA cm-2在0.3 V(vs.RHE)。与商业PT/C催化剂相比,它具有较高的电子转移数和较低的过氧化氢产量。本研究设计的绿色,简单和有效的策略将丰富的低 - 成本废物生物量转化为高价值的多功能碳材料,这对于实现多功能应用至关重要。
几十年来。 [1] 目前商业化锂离子电池的能量密度受到层状结构正极材料(如 LiCoO 2 和 LiNixMnyCo1−x−yO2)的限制,由于材料晶格中 Li+ 主位点有限,只能提供小于 220 mAh g−1 的比容量。 [2] 此外,锂离子电池市场的快速扩张导致钴和镍价格飙升(2022 年钴金属价格高达 90 美元/千克)。因此,迫切需要探索高能量密度、低成本的无钴、无镍正极材料。转化型材料通常由 Fe、Cu、O 和 S 等价格较便宜且环境友好的元素组成,其容量比插层型电极材料高得多。 [3] 在各种转化化合物中,过渡金属氟化物(MF x )既提供> 2.0 V 的高氧化还原电位(由于金属氟化物键的高离子性),又提供大容量,因为每单位分子式允许多个电子转移,从而实现相当高的理论能量密度。[4] 转化正极面临的一个主要挑战是循环稳定性。优化的 Fe 基氟化物如 FeF 2 、FeF 3 、FeOF 和 Fe 0.9 Co 0.1 OF 可以稳定地充电/放电几百次循环。[5] 然而,Fe 基正极的能量密度仍然不够高。氟化铜(CuF 2 )比 Fe 基氟化物提供了更高的比能量密度(1874 Wh kg −1 ),因为它对 Li/Li + 的理论电位高达 3.55 V,理论容量为 528 mAh g −1 。[6]
摘要 纸基传感器上金属阳离子的电化学检测因其易于制造、一次性使用和成本低廉而被认为是当前光谱和色谱检测技术的一种有吸引力的替代方案。本文设计了一种新型炭黑 (CB)、二甲基乙二肟 (DMG) 墨水作为电极改性剂,与 3 电极喷墨打印纸基体结合使用,用于水样中镍阳离子的吸附溶出伏安电分析。在没有常用的有毒金属薄膜的情况下,所开发的方法提供了一种新颖、低成本、快速且便携的吸附溶出检测方法来进行金属分析。该研究展示了一种在纸基传感器上检测镍的新方法,并通过限制使用有毒金属薄膜,在纸基金属分析领域的先前工作的基础上取得了进展。首次通过增加活性表面积、电子转移动力学和与非导电二甲基乙二肟膜相关的催化效应,提高了器件的灵敏度,并通过电分析进行了确认。首次使用 CB-DMG 墨水可以在电极表面选择性预浓缩分析物,而无需使用有毒的汞或铋金属膜。与类似报道的纸基传感器相比,实现了检测限 (48 µg L -1 )、选择性和金属间干扰的改善。该方法用于检测水样中的镍,远低于世界卫生组织 (WHO) 标准。