摘要:对晶体材料的化学空间,尤其是金属 - 有机框架(MOF)的实验探索,需要对大量反应的多组分控制,这是不可避免地会在手动执行时耗时和劳动力。为了在保持高可重复性的同时加速物料发现速率,我们开发了一种与机器人合成平台集成的机器学习算法,用于闭环探索多氧盐损坏金属金属 - 有机框架(POMOFS)的化学空间。通过使用从不确定性反馈实验获得的更新数据和基于其化学构成的POMOF分类的多类分类扩展,通过使用更新数据来优化极端梯度提升(XGBoost)模型。POMOF的机器人合成的数字签名由通用化学描述语言(χDL)表示,以精确记录合成步骤并增强可重复性。九种新颖的Pomofs,其中包括具有良好的可重复性的POM胺衍生物与各种醛的硫胺衍生物的胰岛化反应,这些pomofs具有源自单个配体的混合配体。此外,根据XGBoost模型绘制了化学空间图,其F1得分高于0.8。此外,合成的Pomofs的电化学性质表明,与分子POMS相比,较高的电子转移和Zn比率的直接效应,所使用的配体的类型以及POMOFS中的拓扑结构用于调节电子传递能力。■简介
主要关键词