到 2024 年,我们设想邮政局实现财务可持续发展,使所有美国人都能在日益数字化的世界中实现互联互通、企业能够发展、社区能够繁荣发展,包括数字化服务不足的农村或城市社区的个人。具体来说,我们设想邮政局将以其核心公共服务使命为基础,为所有美国人提供普遍、负担得起、高质量的邮件和包裹投递服务,并将这一公共服务使命扩大到包括提供基本的电子政务服务。我们设想一种商业模式,能够灵活地最好地满足客户不断变化的需求并应对市场趋势,包括由于电子转移导致的邮件数量持续大幅下降,以及由于最后一英里竞争加剧导致的包裹投递量持续但增长放缓。我们设想邮政局成为首选雇主,能够吸引、留住和培养高质量、以客户为中心的员工。最后,我们设想邮政局将保持其作为世界上最高效、最实惠的邮政运营商和最值得信赖的联邦机构的地位。
烟酰胺腺苷二核苷酸磷酸(NADPH)氧化酶(NOX)通过介导活性氧的产生,在真核细胞的生理学中具有重要作用。在细菌中发现了具有NOX催化核心的进化较远的蛋白质,包括肺炎链球菌NOX(SPNOX),该蛋白质被认为是研究NOX的模型,因为其在洗涤剂胶束中具有较高的活性和稳定性。我们在这里提出了无底物和烟酰胺腺苷二核苷酸(NADH)结合的SPNOX以及NADPH结合的野生型和F397A SPNOX的冷冻电子显微镜结构。这些高分辨率结构提供了对电子转移途径的见解,并揭示了由F397位移调节的氢化物转移机制。我们进行了结构引导的诱变和生化分析,这些诱变解释了对NADPH的底物特异性的缺乏,并提出了组成型活性背后的机制。我们的研究提出了结构基础SPNOX酶活性,并阐明了其体内功能的潜力。
电子和空穴对以及(ii)强氧化还原电位以支持材料间的高电子转移。2先进纳米结构和纳米层状光催化剂的出现为多学科研究开辟了道路,旨在定制物理化学、结构和光电特性,以促进增强有机污染物的催化作用。增强催化性能和材料可见光活化的选择包括半导体的金属或非金属掺杂3和石墨烯等催化纳米结构的缺陷工程。4最有前途的工程策略涉及电子屏障的设计,它被引入导电层和半导体层的交界处。5导电层(通常是金属或碳表面)与半导体材料(通常是金属氧化物)之间的界面可能导致两种类型的结的形成,即欧姆结或肖特基结。 6 一方面,当半导体材料提供比导电材料更高的功函数时,就会形成欧姆结。 7 然而,欧姆接触在金属和导电材料之间提供了持续的电子流。
质量作用定律、速率和平衡 速率常数和反应级数 速率定律和反应机理(零级、一级、二级反应和分数级) 碰撞理论、过渡态理论和阿伦尼乌斯方程 稳态近似 测量反应动力学和确定速率常数的方法,动力学机制建模 酶动力学(米氏动力学、抑制、变构酶;代谢中的酶反应) 影响反应速率的因素(反应的温度依赖性和活化参数、粘度和分子动力学、反应的扩散控制) 复杂反应的动力学分析(瞬态和反应序列研究简介;电子转移和自由基反应动力学;聚合动力学) 生物分子反应动力学和分子药理学简介(蛋白质 - 配体结合和交换动力学;结合位点、单位点和多个独立位点模型、与膜受体结合、降维)
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,这使得在较小的电荷载流子密度下可以有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上具有发展前景的可扩展外延石墨烯需要分子掺杂,而分子掺杂在环境条件下通常是不稳定的,以补偿来自 SiC 衬底的电子转移。在这里,我们采用了有机电子器件中常见的经典玻璃封装,以使分子掺杂的外延石墨烯对空气中的水和氧分子钝化。我们已经研究了玻璃封装设备中霍尔量子化的稳定性近 1 年。经过近一年的多次热循环,霍尔量子化保持在阈值磁场之上,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通未封装的器件在空气中放置 1 个月后明显显示出与标称量子化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
生物降解因条件温和、成本低廉、不产生二次污染等优点而受到广泛关注。6,7全球三分之二以上的N2O排放来源于土壤生态圈和水圈,在微生物反硝化途径的最后一步可以还原为无害的氮气(N2)。8–10一氧化二氮还原酶(N2OR)是唯一进行生物反硝化过程的酶,11,12因此,有效利用N2OR对于通过生物方法有效控制N2O排放至关重要。N2OR是一种周质多铜酶,为头尾相连的同型二聚体,每个单体包括两个结构域:C端的电子转移双核CuA中心和N端的催化四核CuZ中心。 13,14通常,CuA由6个氨基酸残基配体,包括1个蛋氨酸、1个色氨酸、2个半胱氨酸和2个组氨酸;CuZ则由7个组氨酸配体。15,16基于N 2 OR的三维结构,对N 2 O催化还原机理的一致看法是,N 2 O与CuZ的催化活性位点结合,然后电子从CuA转移,将N 2 O转化为N 2 。
作为驱动力,诱导物理或化学电子转移过程来促进催化。[1–3] 自从机械催化被首次提出以来,[4] 它已被广泛应用于材料合成、[5] 水处理、[6] 回收或其他自由基相关化学等各个领域。[7] 近年来,利用压电/热电/铁电半导体的表面极化电荷,压电催化是一种新型的机械催化,已见报道,可通过机械刺激直接实现电化学反应。[8] 变形的压电/热电/铁电半导体的极化可以增强自由电荷和束缚电荷的能量,促进载流子的分离,增加参与催化反应的激发电荷的寿命。 [9,10] 压电催化不仅可以利用环境中的机械振动(如风或波浪),还可以利用工业系统中的冗余振动进行催化。因此,压电催化被认为是一种有前途的绿色机械催化。然而,压电、热电或铁电效应仅表现在具有非中心对称结构的压电材料中,例如纤锌矿结构,[11] 这极大地
方案 1 。Fe-氧介导的烯烃氧化。Fe-氧介导的烯烃氧化通常会生成相应的环氧产物。以苯乙烯 (1) 为模型底物,P450 催化的烯烃环氧化(环氧化物途径,紫色)和反马氏氧化(羰基途径,橙色)的拟议催化循环,首先形成铁-氧复合物,称为化合物 I (Cpd I)。第一个 C–O 键形成 (TS1) 生成短寿命自由基中间体 (Int-1),该中间体通过非常快速的第二个 C–O 键形成步骤 (TS2) 直接转化为环氧产物 (2)。这两个 C–O 键形成步骤通常以立体特异性方式进行,可能分步发生(当形成浅反应性自由基中间体时没有差向异构化)或以协同方式发生。另一种逐步反马氏氧化(羰基途径)被认为是通过分子内电子转移发生的,产生高反应性的碳正离子中间体(Int2)。随后的 1,2-氢化物迁移(TS3)产生羰基产物醛 3。
摘要:我们描述了一种生物电极系统,用于评估细胞色素P450 2E1(CYP2E1)对氯唑唑酮的电催化活性。使用人CYP2E1,细胞色素P450还原酶(CPR)和细胞色素b 5(Cyt B 5),使用了系统的一个电极将Baccosomes immotimbilize Baccosomes immotimbilize Baccosomes。第二个电极用于用平方波伏安法注册,通过其直接的电化学氧化来量化CYP2E1产生的6-羟基氯唑唑酮。Using this system, we determined the steady-state kinetic parameters of chlorzoxazone hydroxylation by CYP2E1 of Bactosomes immobilized on the electrode: the maximal reaction rate ( V max ) was 1.64 ± 0.08 min − 1 , and the Michaelis constant ( K M ) was 78 ± 9 µ M. We studied the electrochemical characteristics of immobilized Bactosomes and have揭示了从电极中的电子转移既出现到CPR的平均假体和CYP2E1和CYT B 5的血红素铁离子。此外,已经证明CPR具有激活CYP2E1电催化活性向卫生的能力,这可能是通过分子间电子从CPR的电化学还原形式转移到CYP2E1血红素铁离子。